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H I G H L I G H T S

• Institutional hurdles and lack of coordination can hinder transmission expansion.
• Considering high-value extreme weather events in power system planning is pivotal.
• This study analyzes the potential impacts of cooperation in transmission planning.
• Cooperative transmission planning helps reduce power system costs and outages.
• The extent of benefits varies with spatial coverage of extreme weather events.
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A B S T R A C T

There is growing recognition of the advantages of interregional transmission capacity to decarbonize electricity 
grids. A less explored benefit is potential performance improvements during extreme weather events. This study 
examines the impacts of cooperative transmission expansion planning using an advanced modeling chain to 
simulate power grid operations of the United States Western Interconnection in 2019 and 2059 under different 
levels of collaboration between transmission planning regions. Two historical heat waves in 2019 with varying 
geographical coverage are replayed under future climate change in 2059 to assess the transmission cooperation 
benefits during grid stress. The results show that cooperative transmission planning yields the best outcomes in 
terms of reducing wholesale electricity prices and minimizing energy outages both for the whole interconnection 
and individual transmission planning regions. Compared to individual planning, cooperative planning reduces 
wholesale electricity prices by 64.3 % and interconnection-wide total costs (transmission investments + grid 
operations) by 34.6 % in 2059. It also helps decrease greenhouse gas emissions by increasing renewable energy 
utilization. However, the benefits of cooperation diminish during the widespread heat wave when all regions face 
extreme electricity demand due to higher space cooling needs. Despite this, cooperative transmission planning 
remains advantageous, particularly for California Independent System Operator with significant diurnal solar 
generation capacity. This study suggests that cooperation in transmission planning is crucial for reducing costs 
and increasing reliability both during normal periods and extreme weather events. It highlights the importance of 
optimizing the strategic investments to mitigate challenges posed by wider-scale extreme weather events of the 
future.
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1. Introduction

Keeping global warming under 1.5 ◦C or 2 ◦C requires reaching net- 
zero emissions by 2050 or 2070, respectively [1]. A global trans
formation of the energy sector is needed to decrease greenhouse gas 
(GHG)1 emissions and achieve these climate goals [2,3]. Increasing the 
share of variable renewable energy resources such as solar and wind is 
crucial for decarbonizing electricity grids [4,5]. As intermittent and 
variable renewable energy capacity grows and firm thermal generation 
capacity shrinks, grid operators are challenged to adopt new practices to 
maintain balance between supply and demand. On the other hand, 
climate change influences electricity demand, system reliability, elec
tricity prices, and GHG emissions in bulk power systems [6,7]. For 
example, the intensity and frequency of extreme weather events (e.g., 
heat waves and hurricanes) are increasing due to climate change. These 
events strain electricity grids by increasing demand and reducing the 
efficiency of the power grid infrastructure [8–10]. Since grid operators 
are facing a dual challenge of decarbonizing and maintaining the reli
ability of power systems during extreme weather events [11], joint 
consideration of these two phenomena in power system modeling is 
important [12].

Substantial investment in high voltage transmission capacity is now 
widely viewed as imperative in deep decarbonization of the power grid 
via variable renewable energy resources to interconnect these new 
generators, that are located in wind and solar resource-rich areas, with 
the load centers [4,5,13]. Transmission expansion planning (TEP) is the 
process of deciding when and where new lines should be constructed or 
existing lines should be upgraded [14–16]. TEP exercises attempt to 
meet the future electricity demand while maintaining power system 
resilience and minimizing the cost of long-term transmission in
vestments [17,18]. Traditionally, transmission expansion is carried out 
at a regional level where each utility plans for its own infrastructure, 
which results in more individualized plans [19,20]. Thus, these practices 
do not unveil the total value of coordination between transmission 
planning entities [21]. However, interregional transmission capacity is 
crucial and can offer significant benefits to decarbonize electricity sector 
more efficiently [20,22].

Numerous studies have focused on TEP problems by proposing 
different modeling methods and/or including uncertainty with more 
robust planning approaches [12,19,22–33]. For instance, Ruiz et al. 
proposed an adaptive robust transmission optimization model to pick 
investment alternatives by minimizing total system costs for worst-case 
outcomes of uncertain parameters [23]. Choi et al. considered different 
types of contingencies to solve the TEP problem [24] whereas Cadini 
et al. introduced two objectives in a TEP problem as reliability and cost, 
and used a multi-objective genetic algorithm to find a solution [25]. 
Furthermore, Al-Saba et al. tested artificial intelligence tools like neural 
networks and Tabu search in solving TEP problem [27]. Lastly, Brown & 
Botterud provided insights on the value of interregional transmission for 
a decarbonized U.S. electricity grid by utilizing a co-optimized capacity 
planning and dispatch model [33].

However, none of these studies quantifies the value of cooperation in 
interregional TEP during extreme weather events under future climate 
projections by comparing different levels of transmission expansion 
cooperation. Moreover, previous studies do not consider possible re
ductions of potential transmission cooperation benefits under heat 
waves with varying spatial scales (i.e., local vs. widespread heat waves). 
There is a risk of understating the value of regional and interregional 
transmission investments if rare but important extreme conditions like 
heat waves are not taken into consideration [34,35]. For instance, 
balancing authorities (BAs) may have more opportunities to exchange 

electricity during more localized weather extremes if the transmission 
network is planned cooperatively while considering these kinds of high- 
value conditions. However, more widespread weather extremes in the 
future might deteriorate these collaboration benefits by limiting avail
able power imports as more BAs would be under stress due to significant 
spikes in electricity demands within their region. Therefore, considering 
extreme weather events with varying geographical scale can enhance 
the reliability and resiliency of future power systems.

In this study, we investigate the impacts of cooperation between 
transmission planning entities, quantified in terms of the economic and 
reliability benefits under decarbonization and future climate-altered 
heat wave events with varying spatial scales. We make use of two 
western United States (U.S.) heat wave events in 2019 as base cases of 
local and widespread heat wave examples. Using a novel climate 
perturbation technique, the same two heat waves are replayed 40 years 
into the future (i.e., in 2059) with additional warming to reflect the 
average warming signal from global climate models under a specific 
representative concentration pathway (RCP) scenario. Grid conditions 
under these scenarios are simulated with a customized Grid Operations 
(GO) modeling framework with a production cost model (PCM) 
component to assess the economic and reliability impacts of individual 
(i.e., only intraregional) vs. cooperative (i.e., both intraregional and 
interregional) TEP. In order to come up with representative set of load 
and on-the-ground generator conditions of the U.S. electricity grid in 
2059, we utilize an advanced framework that consists of several models 
working in sync. Those models include a transmission expansion model 
(TEP) [36] to optimize capacity additions to existing transmission lines, 
Global Change Analysis Model (GCAM) [37] to generate future annual 
state-level total demands, generation capacity additions, and fuel prices, 
Total Electricity Loads (TELL) model [38] to project hourly electricity 
loads in each BA, Capacity Expansion Regional Feasibility (CERF) model 
[39] to site the future generators to appropriate locations depending on 
numerous geospatial siting suitability layers [40], and Renewable En
ergy Potential (reV) model [41] to determine hourly solar and wind 
generation profiles for the future years.

2. Methods

In this section, we start with a brief explanation of the GO modeling 
framework as well as its PCM component. Then, we provide a descrip
tion of the TEP model, which is an extension of GO model to account for 
transmission planning, and the other supporting models used in this 
study (GCAM, CERF, TELL, and reV).

2.1. Grid operations (GO) framework

Grid operations models are often customized to specific regions or 
applications due to higher computational intensity requirements [42]. 
Balancing model fidelity (i.e., accuracy) and computational burden (i.e., 
runtime) have become major challenges for power system researchers 
[43]. In this study, we utilize a customizable framework for balancing 
computational speed and fidelity in interconnection-wide PCMs called 
GO [44].

The open-source GO framework utilizes BA-level data and synthetic 
grid topologies [45–48] created by Texas A&M University. GO allows 
users to create simpler representations of U.S. interconnections to find a 
balance between model fidelity and runtime. Although this model is 
available for all three interconnections of the U.S., in this study, we 
utilize the U.S. Western Interconnection (WI) as a test bed with a sub- 
model of GO called GO WEST. The geographical scope of this model 
includes the 28 BAs located in the U.S. states of the WI (Arizona, Cali
fornia, Colorado, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, 
Washington, and Wyoming).

GO WEST is a Python-based software including a PCM module that 
helps researchers customize the topology with respect to their research 
questions/needs and simulate grid operations with the resultant 

1 Although all acronyms and abbreviations used in this study are defined in 
the main text, readers might refer to Table S1 in the Supplementary Information 
to see the definitions of all acronyms and abbreviations in one place.
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topology. It makes use of a base 10,000-node synthetic representation of 
the U.S. WI [45,46]. Since running a model with this complexity would 
entail a significant amount of time and resources, GO WEST allows re
searchers to alter model complexity by creating a reduced network 
through four user-defined parameters which are number of nodes, 
mathematical formulation, transmission line capacity scaling factor, and 
hurdle rate scaling factor.

After selecting these four model parameters and creating a reduced 
order representation of WI via a network reduction algorithm [49], GO 
WEST simulates hourly grid operations with the embedded PCM mod
ule. The PCM module consists of a unit commitment/economic dispatch 
type model that leverages linear programming (LP) or mixed-integer 
linear programming (MILP) formulations depending on the user’s 
choice. The objective function is minimizing the total operational cost of 
satisfying hourly electricity demand at each node subject to several 
constraints such as maximum generator capacities, ramp rates, and 
thermal capacities of transmission lines. The PCM module utilizes the 

Table 1 
Experimental setup showing the scenario parameters and scenario names.

Year Climate Change Scenario Transmission 
Expansion Type

Heat Wave 
Scale

2019 Historical Meteorology

Default Line 
Limits (Base)

Local
Widespread

Individual TEP
Local
Widespread

Intermediate TEP
Local
Widespread

Cooperative TEP Local
Widespread

2059

rcp45hotter_ssp3 
(RCP4.5 representative 
concentration pathway, SSP3 shared 
socioeconomic pathway, and hotter 
climate model uncertainty)

Individual TEP Local
Widespread

Intermediate TEP
Local
Widespread

Cooperative TEP
Local
Widespread

Fig. 1. (Top left) Hottest hourly temperature distribution during the 2019 local heat wave; (top right) hottest hourly temperature distribution during the 2019 
widespread heat wave; (bottom) total electricity demand time series during both heat waves for the WI.

K.Z. Akdemir et al.                                                                                                                                                                                                                             Applied Energy 378 (2025) 124825 

3 



direct current (DC) power flow approximation and has an hourly 

temporal resolution. The model has a user-defined planning horizon 
which defaults to 24-h.

Decision variables of the model consist of on/off status (if MILP is 
used) and electricity generation from each generator, voltage angle at 
each node, power flow on each transmission line, and unserved energy 
(i.e., loss of load [LOL] or outages) at each node. We placed a hypo
thetical generator at each node with an extremely high marginal cost of 
generation (2000 $/MWh = value of lost load [VOLL] in the California 
Independent System Operator (CAISO) [50]). These hypothetical gen
erators are only triggered when there is an energy imbalance due to a 
lack of generation capacity and/or transmission congestion at that node. 
The power generated from these hypothetical generators illustrates the 
amount of lost load at that node. Model outputs include hourly gener
ation schedule of each generator, hourly locational marginal price 
(LMP) at each node, hourly unserved energy at each node, hourly 
voltage angles at each node, and hourly power flow on each trans
mission line. For more detailed information about GO framework and 
the PCM component, please refer to [44].

2.2. Transmission expansion planning model (TEP)

We developed a TEP model for this study to determine the optimal 
thermal capacity additions to existing transmission lines, which utilize 
the same right of way. Our TEP model is an LP model and can be solved 
with both open-source and commercial solvers. Gurobi is used as the 
solver for both the GO and TEP models in this paper.

The objective function of the TEP model is to minimize the annual
ized system cost which consists of the operational cost to satisfying 
electricity demand (i.e., generation cost), cost of loss of load (i.e., un
served energy), and cost of new transmission capacity additions (i.e., 
capital/investment cost). In addition, the TEP model considers several 
constraints including maximum and minimum generation limits for all 
generators, voltage angle limits, Kirchhoff’s voltage law (KVL), 
Kirchhoff’s current law (KCL), default and new thermal capacity limits 
of transmission lines, and yearly transmission investment budget limits.

When making TEP decisions, the model utilizes a representative hour 
approach. We select 12 hourly time steps to represent the most extreme 
conditions in 12-months of a year. In this way, the investment decisions 
become more robust compared to assuming just a single highest-demand 
hour in a year. We assume that electricity demand is the highest total net 
hourly demand (i.e., demand minus solar/wind generation) within the 
entire WI each month. Other assumptions made by the TEP model 
include treating nuclear capacity as a must-run resource, using monthly 
average fuel prices for each generator and monthly average hydropower 
availability. Available solar and wind power values are gathered at the 
selected demand hour and paired with the hourly electricity demand in 

Fig. 2. 125 node topology of GO WEST and the three TPRs in the WI.

Fig. 3. Flowchart of the experimental setup to simulate grid stress during 2019 
and 2059. 2015 is the baseline year of this study. Generation and transmission 
capacity expansion plans are made every 5 years, starting in 2020 and ending in 
2055. Generation and transmission assets remain unchanged through those 5- 
year periods. Simulating grid stress of a year within a 5-year period is 
possible by using demand and solar/wind time series of that specific year.

Table 2 
LMP and unserved energy statistics for the whole WI and individual TPRs in 
2019.

Region Scenario Average LMP 
($/MWh)

Annual LOL to Demand 
Ratio (%)

WI

Base 94.55 0.35
Cooperative 49.24 0
Intermediate 53.21 0
Individual 54.03 0

CAISO

Base 61.77 0
Cooperative 50.29 0
Intermediate 56.49 0
Individual 61.62 0

WestConnect

Base 196.27 1.32
Cooperative 45.38 0
Intermediate 46.81 0
Individual 45.41 0

NorthernGrid

Base 53.99 0
Cooperative 51.03 0
Intermediate 54.21 0
Individual 51.39 0
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each month. Lastly, we feed the model with the investment cost of new 
transmission capacity additions from [51], which considers length- 
dependent piecewise investment cost curves for alternating current 
(AC) and DC transmission lines.

Since investment costs are yearly but other costs are hourly, gener
ation and unserved energy costs are scaled up to a yearly value by 
multiplying those costs with the number of hours in each respective 
month. Then, TEP model considers all these parameters in a single step 
to decide on the necessary transmission capacity additions. The model 
outputs include generation schedule of each generator, unserved energy 
at each node, voltage angle at each node, and power flow on each 
transmission line for those 12 hourly time steps, as well as incurred 
investment cost and new capacity addition for each transmission line. 
More details, including the model formulation of TEP model, are pre
sented in Supplementary Information.

2.3. Supporting models

Here, we provide a brief description of supporting models, which are 
GCAM, TELL, CERF, and reV. More detailed information about these 
models can be found in Supplementary Information.

GCAM [52] is a dynamic model that captures global interactions in 
energy, water, land, and emissions markets, influenced by socioeco
nomic development, climate change, and technological advancement. It 
divides the world into several regions for detailed analysis. This study 
uses GCAM-USA v5.3 [37], which subdivides the U.S. into 51 regions, 
enhancing the representation of state-specific socioeconomic and energy 
conditions. The model balances supply and demand in each market at 5- 
year intervals, considering electricity trade, fuel prices and detailed end- 
use sectors. It distinguishes between long-term capacity expansion and 
short-term dispatch strategies to ensure electricity demands are met 
with a 15 % reserve margin at sub-annual intervals [53].

TELL [38] is a machine learning model that predicts hourly load 
profiles for each BA. It trains a unique multilayered perceptron model 

Fig. 4. Time series and distributions of hourly average LMPs and total unserved energy in the WI during the 2019 local and widespread heat waves.
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for each BA, using historical load data from 2016 to 2018 and meteo
rological variables like temperature, humidity, shortwave radiation, 
longwave radiation, and wind speed. It also considers time of day, day of 
the week, and federal holidays. The unique meteorology forcing in this 
experiment is described in [54,55], which was processed to the county 
and then BA-scale as documented in [56,57]. TELL’s output is scaled to 
match state-level annual loads simulated by GCAM-USA to account for 
population and socioeconomic impacts.

CERF [39] is a geospatial power plant siting tool that downscales 
regional capacity expansion plans to assess the power plant landscape 
over time. It identifies feasible sites for renewable and non-renewable 
technologies by integrating geospatial suitability data with an eco
nomic algorithm [40]. CERF selects optimal plant locations based on 
factors like grid interconnection costs and locational marginal value of 
new generation. Operating at a 1 km2 resolution, it considers factors 
such as protected lands, population density, and water availability to 
ensure viable and accurate expansion planning by siting the new gen
erators coming from GCAM-USA to appropriate locations.

reV [41,58] is a tool that models renewable energy systems, covering 
generation, capacity, and economics aspects. It is used to project solar 
and wind generation for future years. reV utilizes numerous meteoro
logical inputs such as temperature, solar irradiance, pressure, wind di
rection and wind speed. These inputs were derived from 
Thermodynamic Global Warming (TGW) dataset, a dynamically down
scaled meteorological dataset available at 1/8th degree over the conti
nental U.S. [50], which were preprocessed to produce all the necessary 
wind and solar input variables for future hourly solar and wind gener
ation projections.

3. Experimental design

In this section, we describe our experimental design, including the 
different modeling scenarios used to quantify differences between the 
effects of individual, intermediate, and cooperative TEP (Table 1).

We selected two heat waves between 2015 and 2019 by analyzing 
the 2-m temperatures and electricity demands between 1980 and 2019 
of WI BAs [54,56,57,59]. For selecting the heat waves, we calculated 
three different metrics: (1) hourly BA temperature anomalies with 
respect to average temperature between 1980 and 2014, (2) hourly WI 
temperature anomalies (by calculating BA area weighted temperature 
anomalies) with respect to average temperature between 1980 and 2014 
to assess the geographical coverage of the heat waves, and (3) hourly 
cooling degree days (CDD) for each BA to assess the severity of the heat 
waves. We have analyzed these metrics to make sure the selected heat 
waves led to extreme temperatures for at least three consecutive days. 
Furthermore, we made sure that the interconnection-wide hourly de
mands during the widespread heat wave were higher than hourly de
mands during local heat wave to understand the unique resource 
adequacy implications of this type of event. Considering all these 
together, we selected one local and one widespread heat wave. The 
hottest temperatures and demand profiles throughout these heat waves 
are shown in Fig. 1. The local heat wave occurred between June 9–11, 
2019 [60] and the widespread heat wave occurred between August 4–6, 
2019 [61].

Using the GO framework, we selected a PCM version with 125 nodes, 
an LP formulation, +500 MW transmission line limit scaling factor, and 
a − 100 % hurdle rate scaling factor, since these parameters led to the 

Fig. 5. Transmission investment paths under cooperative, intermediate, and individual TEP scenarios. The color bar represents the additional transmission capacity 
investment at each existing line between 2015 and 2055.
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best results in terms of matching historical LMPs and generation mix 
throughout the WI in the original GO parameter sweep experiment [44]. 
The GO WEST topology we utilized including 125 nodes and three 
transmission planning regions (TPRs) in the WI (CAISO, WestConnect 
and NorthernGrid [62]) are shown in Fig. 2.

For the historical runs (i.e., the actual heat waves in 2019), we 
assumed 2015 installed power system infrastructure (i.e., generators 

and transmission lines) and 2015 fuel prices, but used 2019 demand and 
solar/wind generation profiles. We first simulated the model under a 
historical base case using current transmission line capacities (i.e., 
default 2015 values from GO framework). Then, we ran the TEP model 
to get three different 2019 transmission networks, assuming three 
different levels of coordination.

To represent the cooperative TEP scenario, we ran the TEP model to 
minimize the cost of grid operations and capital costs of transmission 
capacity additions throughout the WI. For the individual TEP scenario, 
we enforced an extremely high interregional transmission line invest
ment cost penalty to completely prohibit increasing transmission line 
capacities between any two TPRs. For the intermediate TEP scenario, we 
applied a + 200 % penalty (i.e., increased cost of building interregional 
transmission capacity) to the lines crossing boundaries of TPRs. In this 
way, the TEP model is discouraged (but not prohibited) from increasing 
transmission line capacities of the lines between any two TPRs, 
emulating institutional hurdles.

A + 200 % cost penalty for the intermediate TEP scenario provided a 
middle point for the interregional transmission expansion. We con
ducted a sensitivity analysis around different interregional cost penalties 
on transmission line buildouts (see Figs. S1-S5 in Supplementary Infor
mation). When investments are analyzed between 2015 and 2020, ~34 
% of all transmission investments are interregional in the cooperative 
TEP scenario (i.e., 0 % interregional cost penalty). On the other hand, 0 

Fig. 6. (Top) Individual generator locations and capacity by type in 2015 and 2055; (bottom) total generator capacity by type in 2015 and 2055.

Table 3 
LMP and unserved energy statistics for the whole WI and individual TPRs in 
2059.

Region Scenario Average LMP 
($/MWh)

Annual LOL to Demand 
Ratio (%)

WI
Cooperative 135.82 0.15
Intermediate 178.44 0.28
Individual 380.19 3.06

CAISO
Cooperative 142.31 0.21
Intermediate 193.18 0.27
Individual 724.48 6.98

WestConnect
Cooperative 112.18 0.11
Intermediate 125.53 0.26
Individual 118.13 0.04

NorthernGrid
Cooperative 146.67 0.11
Intermediate 202.49 0.32
Individual 155.65 0.01
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% of all transmission investments are interregional in the individual TEP 
scenario. When we enforce a + 200 % cost penalty, the share of inter
regional transmission expansion is ~16 %, which is close to the middle 
point of interregional investment shares from the individual and coop
erative TEP scenarios.

These three TEP scenarios (individual, intermediate, cooperative) 
are proxies for different possible cooperation levels. Current trans
mission practices are likely to be somewhere between individual and 
intermediate scenarios, due to complex permitting and siting processes, 
cost allocation disagreements, and lack of comprehensive and consistent 
benefit analysis methods to capture full range of scenarios. Finding so
lutions to these challenges through new policies, incentives, and 
mechanisms can lead to a more cooperative transmission expansion 
scenario.

For the future runs, we run the model toolchain in an iterative 
fashion (i.e., GCAM-TELL-GO-CERF-reV-TEP iteration) in 5-year time
steps to create a projection of the power system as it might develop 
between 2015 and 2055. This iterative simulation process is an effort to 
mimic the actual decision-making on generator investments by consid
ering grid conditions (e.g., demand, LMPs) and determining where to 
site new generators in each timestep. Electricity demand and wind/solar 
generation profiles are modeled with TELL and reV, respectively. GCAM- 
USA is key in providing capacity expansion plans for each state in the WI 
as well as generator costs and fuel prices. CERF sites the new generators 
coming from GCAM-USA within each state. LMPs from the GO model are 
a key input into CERF’s economic algorithm and are dynamic over the 
course of the experiment as new infrastructure is tested in GO. The 
specific scenario we used, a combination of RCP 4.5 climate and emis
sions projections and SSP3 populations (i.e., rcp45hotter_ssp3), results 
in a significant buildout of renewables in the WI to keep the global GHG 

emissions below the 4.5 Wm− 2 forcing threshold. The origin of this 
scenario is the TGW datasets [54] and projections of hourly meteorology 
by BA based on TGW datasets [57]. For more information about how 
TGW data is created, please refer to [55].

To explore the future heat waves (i.e., heat waves in 2059), we as
sume the 2055 power system infrastructure (i.e., generators and trans
mission lines) and fuel prices created by the iterative process described 
above, but 2059 demand and solar/wind values. Since transmission 
infrastructure will have changed by 2055, we make use of TEP model to 
come up with individual, intermediate, and cooperative transmission 
line capacities at every 5-year time step. A case with no TEP in the future 
(i.e., keeping transmission capacities constant through 2055) is not 
considered because it would not be realistic as significant transmission 
investments are expected for the future due to decarbonization efforts 
[63–66]. In this study, future individual, intermediate, and cooperative 
TEP approaches persist throughout the experiment (up until 2055) and 
do not affect each other. Therefore, there are three independent 
branches to represent individual vs. intermediate vs. cooperative TEP 
scenarios.

In order to provide equal grounds for each TEP scenario, a yearly 
transmission investment budget is enforced as a constraint in TEP 
model. Between 2015 and 2020, the transmission budget is determined 
as $4 billion/year, informed by historical investments within WI 
[67,68]. This budget is raised by 20 % (i.e., to $4.8 billion/year) and by 
50 % (i.e., to $6 billion/year) between 2020 and 2030 and 2030–2055, 
respectively to prevent possible underinvestment issues. Transmission 
budget outlooks are gathered from the base electrification case in [69]. 
Fig. 3 provides an overall representation of the experimental setup, 
which resembles an integrated, iterative and multiscale framework as 
discussed in [70].

Fig. 7. Hourly average LMP distributions for the whole WI and individual TPRs in 2059.
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The 2019 and 2059 heat waves capture the highest temperature 
anomalies in the western U.S. and serve as a representative cases in this 
study. In order to capture the worst-case conditions (i.e., highest CDDs), 
years 2017 and 2057 including a local and widespread heat wave are 
also simulated with the same experimental setup. The outcomes of these 
additional simulations can be found in the Supplementary Information. 
The results of these additional simulations fully support the results and 
conclusions reached in this study.

4. Results and discussion

In this section, annual and heat wave-specific results from the his
torical simulations are discussed first. Then, we outline how the WI 
evolved under the rcp45hotter_ssp3 scenario. Lastly, we present more 
in-depth results on the LMPs, unserved energy, generation mix, and 
power flow from the future simulations.

All hourly average LMPs reported in this section are demand- 
weighted so that nodes with higher demand contribute more to 
regional (i.e., hub) LMPs. Moreover, although no TEP were required in 
2019, we included the historical results briefly to show how historical 
grid operations could have been affected by different transmission 

planning approaches and to lay the foundation for the future results 
which is our main focus.

4.1. General results in 2019

LMPs and unserved energy are two useful metrics to understand the 
impact of different TEP approaches on the electricity grid. LMP and 
unserved energy results in 2019 are presented in Table 2. Any type of 
transmission expansion in 2019 reduces the LMPs compared to the base 
case, especially for WestConnect. Because new transmission capacity 
relieves congestion on the lines and make it possible to utilize cheaper 
generators such as solar and wind more, which is a part of LMP calcu
lation. However, the impact of individual TEP on CAISO LMPs is 
negligible compared to the base case, which shows that CAISO needs 
new interregional transmission capacity more than intraregional trans
mission capacity.

In general, LMPs are reduced most with cooperative TEP, followed 
by the intermediate TEP and then individual TEP scenarios. Compared 
to base case, throughout the WI, average LMPs are reduced by 45.31, 
41.34, and 40.52 $/MWh under cooperative, intermediate, and indi
vidual TEP cases, respectively. Cooperative TEP benefits CAISO the most 

Fig. 8. (Top) Annual generation by type in the WI in 2059; (bottom) total annual generation and demand in three TPRs in 2059. Colors designate the three TEP 
scenarios and electricity demand.
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in terms of LMP reduction as CAISO relies on imports the most among all 
TPRs (see Fig. S7 in Supplementary Information). In comparison to in
dividual TEP, the marginal LMP benefit of cooperative TEP is 11.33, 
0.03, and 0.36 $/MWh for CAISO, WestConnect, and NorthernGrid, 
respectively. Lastly, any type of TEP substantially enhances power sys
tem reliability by zeroing out the annual LOL to demand ratio (a metric 
for reliability in which lower values indicate better reliability) in 2019. 
This is because additional transmission capacity made it possible to 
exchange more electricity to prevent outages in some nodes.

In terms of generation mix, there are no significant changes across 
the different TEP scenarios. More cooperative TEP approaches lead to 
slightly lower utilization of coal and higher utilization of natural gas 
generators, but this is mostly due to increased connectivity and loca
tional fuel price differences. In this sense, cheaper electricity was able to 
move via new transmission capacity to supply the load. On the other 
hand, more individualized TEP approaches cause CAISO to utilize its 
local generators more, limiting the amount of electricity imports from 
NorthernGrid and WestConnect (see Fig. S7 in Supplementary 

Information).

4.2. Heat wave results in 2019

Every TEP scenario helped reduce the LMPs and zeroed out unserved 
energy during 2019 local heat wave. However, the extent of the benefits 
changes among different scenarios. Throughout the local heat wave, 
average LMPs were 79.83, 49.8, 51.69, and 52.39 $/MWh for base case, 
cooperative TEP, intermediate TEP, and individual TEP, respectively. 
During 2019 widespread heat wave, average LMPs were 108.19, 59.09, 
61.38, and 56.73 $/MWh for the base case, cooperative TEP, interme
diate TEP, and individual TEP, respectively. In addition, minor unserved 
energy events persist in the cooperative and intermediate TEP cases 
whereas they are zeroed out in the individual case (see Fig. 4). This is 
because as individual TEP approach is prohibited from building inter
regional transmission lines, the model allocates the available funds to 
strengthen intraregional lines, which increases nodal connectivity 
within TPRs that helps amidst widespread heat wave during which the 

Fig. 9. Time series and distribution of hourly average LMPs and total unserved energy in the WI during 2059 local and widespread heat waves.
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available imports are very low. These results suggest that although 
cooperative TEP is the most advantageous approach in terms of LMPs 
both annually and during a local heat wave, the positive impacts are not 
large enough to avoid possible LOL during the widespread heat wave.

4.3. Grid transformation between 2015 and 2055

The transmission network in 2055 varies substantially depending on 
TEP scenarios, even though all three have the same annual investment 
budget (Fig. 5). This divergence stems from distinct interregional 

Fig. 10. (Top row) Average interregional power exchanges between TPRs; (second row) daily profile of net demand (i.e., demand - solar and wind generation) and 
net imports to CAISO; (third row) daily profile of solar/wind generation/curtailment in WestConnect and NorthernGrid; (bottom row) kernel density distribution of 
LMPs in CAISO under the three TEP cases. The left, middle, and right columns illustrate the annual average conditions, conditions during the local heat wave, and 
conditions during the widespread heat wave, respectively.
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transmission line investment cost penalties, which lead to better utili
zation of the budget in the cooperative TEP compared to intermediate 
and individual TEP. The individual TEP scenario allowed only intrare
gional transmission development, which lead to underutilization of the 
available budget in some years. This behavior might undermine system 
reliability and resiliency during high-value times such as contingency 
and extreme weather events. Another interesting outcome from Fig. 5 is 
that new transmission capacity between NorthernGrid and WestConnect 
is considerably low under cooperative case. Most of the new interre
gional transmission lines are built to connect CAISO with other two 
TPRs, which illustrates the high electricity import demands in CAISO.

Next, we present generation mix changes between 2015 and 2055 
simulated by GCAM-USA in Fig. 6. There is significant investment in 
installed solar and wind capacity by 2055. Furthermore, all coal and oil 
capacity are retired, and natural gas and nuclear capacity are reduced. 
As in 2015, solar and hydropower generators are mostly located in 
CAISO and NorthernGrid (mostly in the Pacific Northwest), respectively. 
Most of the new wind generators are installed in WestConnect.

4.4. General results in 2059

Similar to our historical (i.e., 2019) results, outputs from the GO 
model in the 2059 simulation year indicate that the lowest average LMPs 
are observed in the cooperative TEP case in WI and all three TPRs. 
Again, CAISO may benefit the most from cooperative TEP. Contrasted 
with the individual TEP scenario, cooperative TEP leads to 244.37 
$/MWh (64.3 %), 582.17 $/MWh (80.4 %), 5.95 $/MWh (5 %), and 
8.98 $/MWh (5.8 %) drops in average LMPs in the WI, CAISO, West
Connect, and NorthernGrid, respectively (Table 3).

Even when transmission investment costs under different scenarios 
are considered, the cooperative TEP still provides significant overall cost 
reductions. Between 2015 and 2055 and for the whole WI, incurred 
transmission investment costs are 64.4 % lower in individual TEP 
compared to cooperative TEP. However, grid operations costs are 152.1 
% higher in individual TEP than in cooperative TEP in 2059. Compared 
to individual TEP, every additional $1 billion spent on transmission 
infrastructure between 2015 and 2055 under cooperative TEP led to a 
corresponding grid operations cost reduction of $2.79 billion in 2059 
only. Consequently, overall interconnection-wide cost (i.e., total trans
mission investment + yearly grid operations cost) is 34.6 % lower in 
cooperative TEP than individual TEP in 2059 (see Table S2 in Supple
mentary Information).

Also, cooperative TEP mitigates electricity outages (i.e., unserved 
energy) throughout the whole interconnection in general but primarily 
in CAISO. The potential benefits of cooperation in transmission expan
sion are much smaller in WestConnect and NorthernGrid in terms of 
LMP reduction and reliability improvements (Table 3 and Fig. 7). This is 
because CAISO requires substantial imports in early mornings and late 
evenings due to diurnal cycle of available solar generation.

Other than LMP and outage reduction, cooperative TEP induces 
lower electricity generation from fossil fuel sources like natural gas and 
higher generation from renewable sources like wind (Fig. 8). Higher 
utilization of wind power is mainly because CAISO can import more 
wind power from WestConnect (see Figs. S8-S13 in Supplementary In
formation for separate generation mixes of the three TPRs). In this sense, 
a more cooperative TEP approach might aid in lowering electricity 
related GHG emissions to achieve climate goals. For instance, total 
renewable curtailments are 23.9 %, 27.7 %, and 30.9 % under cooper
ative, intermediate, and individual TEP scenarios. Thus, cooperatively 
planning transmission investment supports minimizing renewable cur
tailments which in turn draw down LMPs and GHG emissions.

4.5. Heat wave results in 2059

The negative impacts of the same local and widespread heat waves 
are more noticeable in 2059 than in 2019 (see Fig. 9). Since the variable 

renewable energy sources dominate the power supply of the electricity 
grid in 2059, the grid becomes more volatile in terms of LMPs and un
served energy in the absence of electricity storage. Average intercon
nection wide LMPs during the 2059 local heat wave event are 231.72, 
300.76, and 459.26 $/MWh under the cooperative, intermediate, and 
individual TEP scenarios, respectively. Moreover, we see significantly 
lower average outages in the cooperative TEP (214.66 MW) compared to 
the intermediate TEP (739.23 MW) and individual TEP scenarios 
(10,527.72 MW).

On the other hand, during the 2059 widespread heat wave, average 
LMPs are 942.62, 954.07, and 671.42 $/MWh for the cooperative, in
termediate, and individual TEP scenarios, respectively. Even though the 
lowest average LMPs are observed in the individual TEP scenario, me
dian LMPs under the cooperative TEP are lower. Furthermore, the 
lowest average unserved energy is observed under the cooperative TEP 
(4690.92 MW) compared to the intermediate TEP (6078.53 MW) and 
individual TEP (13,512.89 MW).

The fact that CAISO reaps the most benefits of cooperative TEP can 
be explained by the generation mix and power exchange characteristics. 
As shown in Fig. 6, CAISO has significant solar power penetration in 
2059, which necessitates importing electricity from the other two TPRs 
at night. Since the GO model does not currently have a representation of 
electricity storage, these imports occur especially in late evening hours 
when available solar generation is minimal. CAISO imports a significant 
amount of electricity from the other two TPRs throughout the year 
(Fig. 10). During both heat waves, electricity imports to CAISO are 
higher than the yearly average, but the other two TPRs have less excess 
electricity to transmit during the widespread heat wave compared to the 
local heat wave (which affected only CAISO and the desert southwest). 
Electricity imports to CAISO follow the net demand trend (i.e., the “duck 
curve” [71]) throughout the day, but the difference between net demand 
and net imports increases as we go from annual timeframe to local and 
widespread heat wave timeframes. Net demand is defined as total de
mand minus total generation from solar and wind generators. There is 
substantial renewable curtailment on an average day, but the curtail
ment decreases during the local heat wave and approaches zero during 
the widespread heat wave due to very high demands. As CAISO can 
import less electricity during those less curtailment times, difference 
between net demand and net imports peaks, and the potential benefit of 
cooperative TEP drops. We can conclude that cooperative TEP is helpful 
on average, but the marginal LMP benefit of cooperative TEP signifi
cantly decreases as we go from annual timeframe to local and wide
spread heat wave timeframes.

5. Limitations and future work

Though this study offers useful insights on different transmission 
planning approaches, it comes with some limitations that are also di
rections for future work. First, GO model has perfect foresight, meaning 
that it models only day-ahead electricity market operations with no 
forecast errors. Incorporating real-time markets with demand/renew
able forecast errors would enhance the scope of questions that could be 
answered using the tool. Moreover, there is no electricity storage rep
resentation in the GO and TEP models. Integrating energy storage in
vestment decisions and operations into the modeling chain would 
provide further insight into the value of interregional cooperation. This 
point would also require increasing the number of investment decision 
periods represented in the TEP model. Furthermore, robust and/or sto
chastic methods can be incorporated into our modeling chain to repre
sent a broader range of probabilities/scenarios, which would be useful 
to come up with a method to allocate transmission costs by expected 
benefits among different TPRs. Lastly, the GO model assumes only a 
central operator with one objective function for the whole intercon
nection. Finding a way to mimic a cost-minimizing approach within 
each BA/TPR would help simulate individual decision-making within 
these zones.
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6. Conclusion

Electricity grids are undergoing serious transformations due to 
decarbonization and electrification efforts. Interregional transmission 
planning is needed for decarbonization, but the benefits for reliability 
(especially during extreme weather events) are less clear. In this paper, 
we examine the benefits of cooperative transmission planning for grid 
performance during heat waves. We utilized 2019 as a base year and 
selected two heat waves of different spatial scales (one local and one 
widespread). Then, we replayed the same heatwaves in 2059 with a 
future representation of the WI (i.e., generators, fuel prices, demand, 
etc.) that reflects a high renewable energy penetration scenario with 
climate/socioeconomic changes (i.e., rcp45hotter_ssp3). We developed 
and used a TEP model to try different transmission planning approaches 
including a full cooperation scenario, intermediate cooperation sce
nario, and no cooperation scenario by imposing varied investment costs 
of interregional transmission lines between three transmission planning 
regions in the WI.

The results suggest that cooperative TEP yields the best results in 
terms of average LMPs and unserved energy (i.e., outages). From a 
yearly perspective, the lowest hourly average LMPs are observed under 
the cooperative TEP compared to the intermediate TEP and individual 
TEP for the whole interconnection and for all three planning regions. 
Total interconnection-wide cost including transmission investments and 
grid operations is 34.6 % lower in cooperative TEP compared to indi
vidual TEP in 2059. Moreover, cooperative TEP helps substantially with 
minimizing unserved energy and decreasing GHG emissions through 
decreasing reliance on natural gas while reducing renewable energy 
curtailment and increasing wind power utilization.

When results are analyzed specifically for the local and widespread 
heat wave events, we see that cooperative TEP turns out to be advan
tageous during a localized heat wave. However, since all regions are 
under stress to meet extreme demand due to increased cooling needs, the 
marginal benefit of cooperative TEP becomes small during the wide
spread heat wave. Although similar trends are observed in both 2019 
and 2059, the overall distinction between cooperative vs. individual TEP 
is more apparent in 2059. Furthermore, cooperative TEP turned out to 
be most favorable for CAISO as a significant number of solar installations 
caused the region to import a substantial amount of electricity (mostly 
from wind power) from other regions to balance supply and demand, 
especially during the late evening hours when available solar power is 
minimal. Building on top of this experiment, more detailed probabilistic 
assessments that utilize robust/stochastic methods can be used to allo
cate the investment cost of interregional lines depending on the pro
spective regional benefits in terms of expected grid operation cost 
reductions and reliability improvements.

All in all, cooperation during transmission expansion planning is 
extremely useful in terms of reducing LMPs and increasing reliability by 
minimizing outages during extreme weather events. Since wider-scale 
extreme weather events like widespread heat waves can undermine 
the potential benefits of cooperation, strategic power system infra
structure investments are essential. Consequently, robust optimization 
techniques that consider high-value periods like heat waves should be 
used while making decisions about the capacity and location of power 
system infrastructure including energy storage, which would enable full 
utilization of these investments.

Software and data availability

The model is open-source and publicly available. All codes of the 
model and data used are available under [36,72]. All model outputs 
utilized in this study are available under [73]. Also, a meta-repository 
with the workflow and visualization scripts for the whole experiment 
is available under [74].
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