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Abstract
Although damages to local distribution systems from wind and fallen trees are typically responsible
for the largest fraction of electricity outages during hurricanes, outages caused by flooding of
electrical substations pose a unique risk. Electrical substations are a key component of electric
power systems, and in some areas, the loss of a single substation can cause widespread power
outages. Before repairing damaged substations, utilities must first allow floodwaters to recede,
potentially leaving some customers without power for weeks following storms. As economic losses
from flooding continue to increase in the U.S., there has been increasing attention paid to the
potential impacts of flooding on power systems. Yet, this attention has mostly been limited to
geospatial risk assessments that identify what assets are in the path of flooding. Here, we present
the first major attempt to understand how flooding from hurricanes and other extreme
precipitation events affects the dynamic behavior of power networks, including losses of demand
and generation, and altered power flows through transmission lines. We use North Carolina, hit by
major hurricanes in three of the past seven years, as a test case. Using open-source data of grid
infrastructure, we develop a high-resolution direct current optimal power flow model that
simulates electricity production and generators and power flows through a network consisting of
662 nodes and 790 lines. We then simulate grid operations during the historical (2018) storm
Hurricane Florence. Time series of flooding depth at a discrete set of ‘high water’ mark points from
the storm are used to spatially interpolate flooding depth across the footprint area of the storms on
an hourly basis. Outages of substations and solar farms due to flooding are translated to
location-specific losses of demand and solar power production throughout the network. We
perform sensitivity analysis to explore grid impacts as a function of the height of sensitive
equipment at substations. Results shed light on the potential for localized impacts from flooding to
have wider impacts throughout the grid (including in areas not affected by flooding), with
performance tracked in terms of transmission line flows/congestion, generation outputs, and
customer outages.

1. Introduction

The operations of electric power systems are frequently disrupted by extreme weather events such as
hurricanes, floods, and wildfires [1–5], and these impacts are projected to increase due to climate change [6].
Mitigating the power grid’s vulnerability to such events will be critical, as they can lead to widespread
disruptions in power supply, which is increasingly essential to modern life [7]. In the United States (U.S.),
hurricanes are the leading cause of major power outages, with nine out of ten major outages (i.e. outages
affecting>50 000 customers and/or loads>300 MW) being attributed to hurricanes [8–10]. Outages caused

© 2024 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/2753-3751/ad3558
https://crossmark.crossref.org/dialog/?doi=10.1088/2753-3751/ad3558&domain=pdf&date_stamp=2024-4-9
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-2544-8106
https://orcid.org/0000-0002-1999-0628
mailto:lprieto@ncsu.edu
http://doi.org/10.1088/2753-3751/ad3558


Environ. Res.: Energy 1 (2024) 015005 L Prieto-Miranda and J D Kern

by hurricanes are predominately caused by damages to low voltage distribution lines [3, 11] from fallen trees,
which are felled by the combination of high winds and soil saturation [3, 12]. Hurricanes also bring about
inland and coastal flooding from heavy rainfall and storm surges [13]. Floodwaters can cause serious damage
to power system infrastructure, notably electrical substations, which are crucial grid components that serve
as interfaces between power plants, high-voltage transmission, and end-use customers [14, 15]. During flood
events, impacted substations may be inoperative until the floodwaters recede [3, 16], which can cause long
delays in the power system restoration process [13]. These disruptions can have outsized impacts on smaller,
rural communities that rely solely on a few substations for bringing in power supply from the wider grid;
these smaller communities may thus endure longer power outages and much slower and uneven restoration
times [17].

Quantitative evaluations of the effects of hurricanes on the power grid have been conducted in the past.
For instance, in [18], an approach using a geospatial tool that incorporates high wind speed estimates
overlaid with a U.S. electric service area map was employed to identify impacted grid assets during Hurricane
Sandy. The importance of incorporating maintenance and system hardening for critical power infrastructure
components was analyzed in [19] using the relationship between El Niño/La Niña and their seasonal effects
on hurricane arrivals over a long-term climatological horizon. In [20], a probabilistic model to quantify
hurricane resilience in modern power systems was proposed. This model included a hurricane hazard
assessment, component fragility models, a power system performance model, and a system restoration
model. These interconnected models allowed for measuring resilience and predicting economic losses related
to hurricanes. A redispatch strategy was proposed by [21] to enhance the operation resilience of power grids
during hurricanes considering the unavailability of renewable energy sources, while in [22] an event-driven
resilience-based unit commitment model that considers simultaneous failures of system components due to
predefined hurricane events has been proposed. Moreover in [3], an energy system optimization model that
incorporates hurricane risks by combining storm probabilities with infrastructure fragility curves was
proposed. This model optimized investment in grid architecture, fuel mix, and grid hardening measures
while considering climate mitigation policies.

Yet, comparatively little research has addressed the specific impacts of flooding on the grid. In [23],
researchers explored a GIS tool for strategic planning and operational decision-making, aiming to mitigate
issues stemming from severe flooding in the electrical network. This tool incorporated risk assessment,
identification of major electrical asset vulnerabilities, and cost estimation. Additionally [15], introduced a
stochastic resource allocation approach to identify critical substations, maximize grid resilience, and account
for flood scenarios, substation fragility, and historical damage data. Cruse and Kwasinski [13] established
regression curves linking hurricane intensity, outage metrics, and flooding effects on power restoration.
Authors in [24] developed a methodology to assess the economic losses endured by electrical assets during
flooding events. These previous studies largely focused their analysis on asset vulnerability assessment and
statistical estimation of performance metrics. They do not delve into the real-time impacts of flooding on
system dynamics, including the potential for network connectivity effects. This research contributes in two
significant ways: first, by advancing our understanding of the hour-by-hour chronology of flooding impacts
on the grid, such as the sequence of outages in different parts of the system. Second, it explores the network
effects of flooding, including the potential for outages to occur outside flooded areas due to failures
elsewhere on the grid.

Here, we help close this gap in knowledge by analyzing the operations of the North Carolina bulk power
grid using a newly developed open-source, direct current (DC) optimal power flow (OPF) model that
simulates grid behavior while integrating hourly impacts of flooding on power system components across
space. As a test bed, we simulate the operations of this system during a historical major hurricane: Hurricane
Florence, which struck the state of North Carolina in 2018, causing power service losses to over 1 million
customers [25, 26]. We estimate flooding impacts on the North Carolina grid by using a data assimilation
approach for space-time estimation of flooding depth. Chronological impacts of flooding on individual grid
assets are then incorporated into the power system model, which simulates power network dynamics,
measuring generation on an asset level, transmission line flows and congestion, system reliability (unserved
electricity load), and locational shadow prices.

This study represents the first major assessment of flooding and its repercussions on bulk power system
behavior at an hourly temporal scale, taking into consideration disruptions in both power generation and
customer service precipitated by flood-induced outages. A second, important dimension of this research
involves quantifying the flooding-related grid impacts on affected communities through a socio-economic
lens, with a particular focus on the potential for disparate impacts experienced by minority demographic
groups during extreme meteorological occurrences like hurricanes. While our approach in this paper was
specifically tailored for the North Carolina grid, the methodology can be easily applied to other systems.
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The next section will detail the experimental design and methods used in this study. It includes
information on the space-time estimation of flooding depth and the impacted grid assets. Additionally, it
provides details on the power system model, time series inputs, and simulation of flooding impacts. In
section 3, we present the results of our modeling experiment. This section discusses the impacts of flooding
on the North Carolina grid assets and the power system dynamics. In section 4, we discuss the limitations of
the study. We offer concluding thoughts in section 5. Lastly, we share open-source software data and funding
resources.

2. Methods

Figure 1 provides an illustrative overview of the data and models used in our analysis. We begin with a
description of the nodal DC OPF model (see panel (iv) of figure 1) used to simulate operations of the North
Carolina bulk power system, physical system characteristics (including the generation fleet), and time series
inputs to the model. Then we describe our flooding analysis and approach for incorporating flooding
impacts into the power system model (see panels (ii) and (iii) of figure 1).

2.1. DCOPFmodel
The North Carolina grid is responsible for supplying electricity to a vast population of 10.4 million people
residing in the state [27]. In 2018, the total annual net generation of all power plants in North Carolina was
2189 TWh. The generation mix is dominated by natural gas (34%) and then followed by coal, nuclear, wind,
hydro, and solar power plants [28]. For this study, we developed a new, open-source DC OPF formulation of
bulk power system operations in North Carolina (see figure 2).

The DC OPF model represents the North Carolina grid as a network of over 662 nodes and 790
high-voltage transmission lines. We made use of an existing network topology for North America produced
using OpenStreetMap data from Gridkit [29], and selected all nodes in North Carolina and connecting lines,
ensuring a connected graph. We collected publicly available geographic information data that provides
details about the locations of various electric power generation assets (including nuclear, coal, natural gas,
oil, biomass, and utility-scale solar power), substations, and transmission lines (refer to figure 2). The power
plant locations were sourced from [28], while the transmission asset locations, including substations, were
obtained from [30]. Each generator was repositioned to the nearest node in the network. We adopted the
values documented in [30] for the voltage class and used these estimates and line distance to calculate
reactance and surge impedance loading (depicted in figure S2).

The primary inputs to the DC OPF model are hourly time series describing the hourly amounts of
available solar power production, nuclear power production, hydropower production, and electricity load
(see figure S1). Time series data for solar and nuclear power and load are used as inputs to the DC OPF
model, as depicted in figure S1 in the supplementary information. Hourly nuclear generation data was
sourced from [31–33]. Historical hourly generation data for solar was obtained from the US EIA for 2018
[34–36], along with corresponding hourly records of hydropower production [37–39]. Additionally, the
hourly demand records were obtained from the US EIA for 2018 [40]. A state-level time series of load was
disaggregated by node based on population weighting, and a state-level time series of solar power production
was disaggregated by node based on installed solar capacity.

The DC OPF model is written in Python using the Pyomo [41, 42] mathematical programming library
and Gurobi [43] to solve the deterministic optimization. The model’s objective is to minimize the costs
associated with meeting hourly electricity demand and maintaining operational reserves in North Carolina.
This is done while adhering to constraints on individual power generators, transmission lines, nodal power
balances, as well as Kirchoff ’s current and voltage laws. The model operates on a user-defined 24 hour
horizon and the temporal resolution of the model outputs is hourly. The primary decision variables of the
model are binary (on/off) decisions and continuous electricity production from each generator, voltage
angle at each node, load-shedding at each node, and power flow on each transmission line. Model outputs
include the least cost generation schedule, identified down to the individual generator level, hourly nodal
shadow costs (equivalent to locational marginal prices in restructured markets), loss of load at each node (if
applicable), and power flows through transmission lines. A more detailed description of the model and all its
sub-components can be found in the supplementary material. Validation of the DC OPF was conducted
using the generation mix reported by [28], further details on the validation of the model can be found in the
supplementary information.

2.2. Flooding analysis
Assessing the impacts of flooding on power system operations requires having high-resolution space-time
estimates of flooding depth. In this study, we use a purely data-driven approach [44], following a similar
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Figure 1. (i) Primary inputs utilized in establishing the DC OPF model topology; (ii) maximum extent of Hurricane Florence
accounted for in the analysis; (iii) flood depth time series derived from high water marks, estimated via data assimilation process
involving USGS stream gauge records, subsequently employed in the hourly spatial kriging process; (iv) the DC OPF model
incorporates all pertinent weather inputs, topology, and flooded grid asset impacts, thereby assessing the performance of the
North Carolina bulk power grid; (v) the model’s key outputs encompass metrics like generation mix, locational marginal prices,
and transmission congestion for all the assumed flooding depths from 0 to 10 ft.

assimilative approach to [45, 46], integrating different types of data to achieve flooding estimates (as
opposed to physical hydrologic models). We start with records of ‘high water marks’ (maximum flooding
depth) that were collected during Hurricane Florence from [47] (see blue dots in figure 3(b)). The locations
of these points are then paired with the nearest available US Geological Survey (USGS) stream gauge [48]
each of which contains a dynamic hourly record of flood stage (see figures 3(a) and (c)).

Then a bias correction was implemented. This procedure entailed calculating the difference between the
maximum flooding depth indicated by a high-water mark and the highest stage height reading at the nearest
USGS stream gauge. The difference was deducted from the time series data of the stream gauge. This process
was performed for every combination of USGS stream gauge and high-water mark, yielding estimated
hourly flooding depths at each high-water mark. Each resulting hydrograph crests at the exact observed value
in the original dataset.

Figure 4 illustrates the results of this procedure. In figure 4(a), we show estimated chronologies of
flooding depth at each high water mark location in the Lumber River basin during Hurricane Florence. Each
line on the graph corresponds to a high-water mark. Figures 4(b)–(f) present hourly snapshots of estimated
flooding depth at every high water mark in the Lumber River basin for five selected hours before, during, and
after the storm. This analysis was repeated for every major river basin affected by the storm, namely White
Oak, Lumber, Cape Fear, Neuse, and Tar Pamlico.

2.2.1. Variogram analysis
Hourly estimates of flooding depth at high water marks were then utilized to interpolate flooding depth
across the entire study area. As a first step, we used the flooding depth time series as inputs in a spatial
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Figure 2. (a) Power plants considered for the DC OPF model; (b) substations and transmission lines used for the topology of the
DC OPF model.

variogram analysis. The variogram is a function that describes the degree of spatial statistical dependence
observed in a spatial random field, a characteristic known as spatial autocorrelation [49]. In our case, after
identifying the best-fit variogram for each river basin, we can use these functions to interpolate a geospatial
raster of flooding depth across the entire study area.

The semi-variogram model used for the analysis is Matheron’s (1963), in which the semi-variogram
function is the one presented in equation (1).

γ (h) =
1

2 |N(h)|
∑
N(h)

(
zi − zj

)2
(1)

where γ(h) is the sample semi-variance at lag h, which is a vector in both distance and direction, zi and zj are
flooding depth values at spatial locations (high water marks) i and j, and |N(h)|is the number of distinct
pairs in N(h). For each individual hour, and for each river basin, we identify the best fit empirical variogram
that estimates spatial autocorrelation in flooding depth as a function of lag h using least squares regression.
Figure 5 shows an example using the same flooding depth data displayed in figure 4.

2.2.2. Ordinary kriging
The empirical spatial variograms identified in the previous section then allow us to perform a spatial
interpolation, or ‘kriging’ flooding depth across the entire study area on an hourly basis. The estimated
variograms are essentially used as weights to predict values of flooding depth in areas where there are no

5



Environ. Res.: Energy 1 (2024) 015005 L Prieto-Miranda and J D Kern

Figure 3. (a) USGS stream gauges in North Carolina; (b) High water marks during Hurricane Florence in North Carolina; (c)
matching each HWM with the nearby USGS stream gauge for the data assimilation process.

Figure 4. (a) Time series of flooding depth for each high water mark in the Lumber basin; (b)–(f) snapshots of flooding depths at
different hours during Hurricane Florence.

historical observations. When predicting flooding depths for a given area, nearby high water marks more
strongly influence the prediction than high water marks that are further away. Predictions of flooding depth
are made for each of the studied river basins (White Oak, Lumber, Cape Fear, Neuse, and Tar Pamlico) for
every hour between 11 p.m. on 15 September 2018, and 11 p.m. on 26 September 2018. Figure 6 shows a
snapshot of results in different hours for the Lumber River basin.

2.3. Flooding impacts on grid assets
We then further extend our spatial-temporal analysis of flooding depth to assess the impacts on grid assets,
especially substations, and connected utility-scale solar farms, by utilizing the flooding depth outputs
obtained from the kriging analysis in the previous section. Our underlying assumption is that if the flooding
depth at the location of a substation is greater than or equal to the height of sensitive equipment, it is
rendered inoperable. When a solar farm is flooded, we assume that all energy output from that farm ceases.
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Figure 5. (a) Time series of flooding depth for each HWM in the Lumber basin; (b)–(f) variogram estimations for each of the
flooding depth snapshots in the Lumber basin.

Figure 6. (a) Time series of flooding depth for each HWM in the Lumber basin; (b)–(f) kriging interpolation of the flooding
depth for a few selected hours in the Lumber River basin.

When a substation is impacted by flooding, we assume several direct consequences: (1) demand for
electricity behind that substation is unserved, meaning customers experience electricity service outage; (2)
generators ‘behind’ that substation are also rendered inoperable; and (3) all high voltage transmission lines
directly connected to that node in the network are rendered inoperable.

Relatively little information is publicly available about the height of sensitive equipment at electrical
substations. As a result, We test a wide range of scenarios that assume a uniform height of sensitive
equipment at grid assets, ranging from 0 feet (i.e. any water on the ground equals flooding damage) to 10 feet
(i.e. any flooding less than 10 feet equals no damage). We estimate the number of substations and solar farms
impacted on an hourly basis across the study area and alter the time series inputs to the DC OPF model
accordingly.

7
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2.4. Impacted communities
During Hurricane Florence, a significant amount of end-customer demand could not be met [50]. While the
majority of this ‘unserved energy’ was the result of damage to the distribution network caused by tree
damage, here we are interested in isolating potential impacts from flooding. In our analysis, unserved energy
caused by flooding can occur in two ways: (1) direct due to the loss of a substation, which knocks any
customer directly served by that station; and (2) indirect due to the loss of load due to supply and demand
imbalance. Note that indirect unserved energy can be caused by altered generation capacity at solar farms,
and changes in the network topology (losses of transmission lines) that make it impossible for electricity
flows to travel through the network to meet customers or both. The DC OPF quantifies indirect losses of
load using load-shedding variables that are triggered as a last resort to maintain the nodal power balance.

We estimated both direct and indirect unserved energy for each county, and then each demographic
group based on the most recent census data [51], assuming losses are felt proportional to county-level
demographic percentages. This information was then used to estimate both direct and indirect unserved
energy during Hurricane Florence for different demographic groups. Additionally, utilizing county-level
estimates of the Social Vulnerability Index (SVI), we assessed how unserved energy impacted communities
that were already vulnerable to adverse human health effects from external stressors, including natural or
human-induced disasters, or disease outbreaks [52].

3. Results and discussion

Our discussion of results is divided into four main sections. The first section explores the findings from the
flood risk assessment, focusing on the number and type of assets impacted during Hurricane Florence. The
second section delves into detailed results from the DC OPF model. The third section evaluates how these
flooding impacts on the grid may affect people at the county level. Then we discuss methodological
limitations encountered in our analysis.

3.1. Vulnerable grid assets
This subsection provides an overview of flooding-related impacts on grid assets during Hurricane Florence,
specifically focusing on substations and solar generation. The results are summarized in figure 7, which
shows selected results for four different scenarios in which we assume the height of sensitive equipment at
grid assets are 0 ft (most vulnerable), 2 ft, 5 ft, and 10 ft (least vulnerable). Figure 7(a) shows that at an
equipment height of 0 ft, the analysis identified a peak of 93 inoperable substations. This number decreases
to 60 inoperable substations at a height of 2 ft and further diminishes to 7 inoperable substations at a height
of 5 ft. No substations were impacted at a height of 10 ft.

A similar trend is observed in terms of impacts on solar generation figure 7(b). At a sensitive equipment
height of 0 ft, there was a peak reduction of 305 MWh in solar generation. This reduction decreased to
148 MWh at a height of 2 ft and subsequently dropped to 33 MWh at a height of 5 ft. There was no recorded
impact on solar generation at a height of 10 ft.

While specific details regarding the number of substations affected by Hurricane Florence in North
Carolina are not publicly available, estimates do exist. According to [25], a total of 64 substations were
rendered inoperative during the hurricane, a figure aligning roughly with the impacts observed in our model
assuming a height of sensitive equipment of 2 ft (see panel (a) in figure 7). The highest reported flooding
depth during Hurricane Florence was 9 feet [53].

3.2. Flooding impacts on power system dynamics
3.2.1. Generation mix
Figure S28 in the supplementary material explores the impact of flooding on the generation mix in the North
Carolina grid during Hurricane Florence. Demand decreases during the storm (a product of outages and
mandatory evacuation), and solar production decreases (a product of cloud effects and flooding). It is also
noteworthy that there was a decrease in nuclear power contribution during the storm, which reflects the
standard practice of shutting down nuclear power plants as a precautionary measure before hurricane
landfall.

3.2.2. Network effects
This section delves into the detailed impacts of flooding on bulk power system dynamics using the results of
the DC OPF model. Our discussion here concentrates on a relatively short window of time during which
Hurricane Florence impacted the grid, and we focus on two different equipment height scenarios: 2 ft and
8 ft. We explore these two scenarios specifically as a way to demonstrate the potential benefits and effects of
substation hardening (in particular, equipment elevation) as a risk mitigation strategy. However, additional
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Figure 7. Impacted substations (panel (a)) and solar generation (panel (b)). The line colors indicate the extent of grid assets
affected by flooding during Hurricane Florence at specific equipment heights, with 0 ft represented in blue, 2 ft in orange, 5 ft in
green, and 10 ft in red.

simulation results are available for the remaining scenarios in our sensitivity analysis (equipment heights
spanning 0–10 ft) in the supplementary material.

Figures 8 and 9 show hourly snapshots of the NC bulk power system during Hurricane Florence,
assuming equipment heights of 2 ft and 8 ft, respectively. The left column of each figure shows transmission
lines (in red) that are lost due to flooding damages at connected substations. The right column of each figure
shows resultant changes in the magnitude of power flows on each line, compared to a scenario with no
impacts from flooding. The four hourly snapshots depicted are: September 9th at 6:00 a.m., September 16th
at 11:00 p.m., September 18th at 11:00 p.m., and September 20th at 11:00 p.m. The impacts on the network
topology and power flows are clearly higher when we assume damages are triggered at a flooding depth of
2 ft.

Table S2 focuses on transmission lines that are directly impacted by flooding (i.e. attached to a damaged
substation) in a single hour, September 18th at 11:00 p.m. (corresponding to panel c in figures 8 and 9).
When an equipment height of 2 ft is assumed, we detect 30 inoperable transmission lines. This number
decreases to 7 if the equipment is elevated to 8 ft. The most significant changes in power flows assuming a 2 ft
equipment height occur on lines ‘n_1924_n_28663’ and ‘n_1837_n_1924’, with changes of−2566.70 and
−2357.05 MWh, respectively. These values change substantially (to−148.89 MWh, and−346.94 MWh,
respectively) when equipment is elevated to 8 ft.

Yet, in figures 8 and 9, note that in the right column, we see that changes in power flow affect a much
larger number of transmission lines than those that are directly impacted by flooding. We frequently see
transmission lines along the same path as an impacted line that simultaneously experience a large reduction
in power flows (blue shading), because the operator (i.e. the DC OPF model) must find an alternative route
through the network to deliver electricity due to the loss of a small number of lines. In fact, we find that the
largest magnitude changes in power flows are not on lines that are directly impacted by flooding, but rather
on neighboring lines.

9
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Figure 8. Impacted lines and flow differences during Hurricane Florence assuming the height of sensitive equipment at 2 ft.

Table 1 likewise focuses on results from September 18th at 11:00 p.m. (corresponding to panel c in
figures 8 and 9). Here, we evaluate changes in power flows on transmission lines on the same path as lines
that are directly impacted by flooding. When assuming a substation elevation of 2 ft, the highest change in
power flow occurs at line ‘n_31027_n_28663’ with a value of−3153.13 MWh, which is later reduced after
elevating the substations up to 8 ft, reducing the changes in power flows to−51.11 MWh.

During the storm, we also observe that flooding causes some lines to experience large increases in power
flows (red shading in right column panels of figures 8 and 9); these lines represent the alternative paths the
DC OPF chooses through which to deliver electricity. In this sense, figures 8 and 9 allow us to observe the
adaptive capabilities of the network to respond in real-time to asset losses due to flooding.

3.2.3. Nodal shadow costs and reliability losses
In addition to direct unserved energy caused by flooding of substations (which, in this study, are assumed to
result in outages for all connected customers ‘behind’ that substation), we can also measure the potential for
wider (indirect) reliability losses caused by nodal imbalances of supply and demand. The DC OPF model
includes a load-shedding variable representing load-shedding (akin to a rolling blackout), which is penalized
at $10 000/MWh. This is an order of magnitude higher than the marginal cost of any generator in the system,
so the operator will only choose to shed load if it is the only way to maintain the nodal balance in supply and
demand. Figures 10 and 11 show results for the same two equipment height scenarios (2 ft and 8 ft,
respectively), and for the same hourly snapshots as figures 8 and 9.

In the left column, counties are colored by the actual level of outages reported by [54] during Hurricane
Florence (the vast majority of these reported outages are caused by wind and tree damage, not flooding).
Using records of actual customer outages reported by [54], we translate these to MWh of unserved energy,
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Figure 9. Impacted lines and flow differences during Hurricane Florence assuming the height of sensitive equipment is at 8 ft.

Table 1.Major impacted neighbor transmission lines at 11:00 p.m. on 09/18/18.

Neighbor lines: 09/18/18 11:00 PM
Flow in MWh Changes in power flows

Lines No flood 2 ft 8 ft 2 ft 8 ft

n_31027_n_28663 3329.68 176.55 3278.57 −3153.13 −51.11
n_4472_n_6922 −3524.15 −419.21 −3472.66 −3104.94 −51.49
n_28719_n_7062 190.40 0 381.80 −190.40 191.39
n_6687_n_7062 −189.02 0 −380.41 −189.02 191.39
n_4093_n_28470 −936.07 −1892.61 −1046.52 956.55 110.45
n_4093_n_7049 936.07 1892.61 1046.52 956.55 110.45
n_6967_n_6682 1155.45 2155.86 1273.75 1000.41 118.30
n_6682_n_7011 −358.52 −1521.11 −543.73 1162.59 185.22

adopting an average residential consumption rate of 0.08 MWh per customer, in accordance with the
findings of [55]. Layered on top of these values, the circles indicate the positions of nodes that experienced
flooding-related losses of load. These are total losses of load caused by both indirect and direct unserved
energy. The magnitude of these losses is represented by the color of the circles, using the same scale as the
reported outages.

The right column of each panel shows the corresponding values of LMPs (locational marginal prices) at
each node. When the load-shedding variables are triggered, the nodal ‘shadow cost’ (also referred to as LMPs
in restructured power markets) increases to very high levels.
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Figure 10. Left column: Panels (a)–(g) illustrate reported outages at the county level (‘Outages in MWh’), with small dots
representing the total flood-related losses of load in MWh at a flooding depth of 2 ft. Right column: Panels (b)–(h) show
locational marginal prices (shadow prices) at specific hours for a 2 ft flooding depth during Hurricane Florence.

In general, the DC OPF model’s estimate of where unserved energy occurred during Hurricane Florence
aligns with reported outages, as illustrated in figures 10 and 11. Notably, the magnitude of unserved energy
attributed to flooding is consistently lower than the officially reported outages. This is expected because most
outages are caused by fallen trees impacting distribution lines.

On September 18th at 11:00 pm, our model indicated that 65 nodes experienced unserved energy (see
also table S5 in the supplementary material), assuming an equipment height of 2 ft; 36 of these nodes
experienced direct unserved energy, whereas 29 nodes experienced indirect reliability losses. These numbers
drop significantly to only four nodes (1 direct, 3 indirect) when the equipment is elevated to 8 ft (see table S7
in the supplementary material). Tables S8 and S9 in the supplementary material show the nodes experience
the highest flood-related unserved energy (total unserved energy) across different snapshots in time and for
equipment heights of 2 ft and 8 ft.

In general, nodes that experience indirect unserved energy also have shadow costs of $10 000/MWh,
indicating load shedding; but high shadow costs do not necessarily indicate that load shedding is occurring at
a node, only that that part of the grid is experiencing extreme scarcity. Raising the height of equipment
decreases these shadow costs.

Additional results describing the relationship between shadow costs (LMPs) and total unserved energy
for different equipment elevations can be found in the supplementary material (see figures S16–S27).

Our analysis of altered network topology, changes in power flows, flooding-related losses, and high LMPs
are closely interconnected. In particular, these results underscore the potential for flooding impacts at
substations to alter the network topology (and production of solar generation) to create significant unserved
energy outside the areas that experience severe flooding. These disturbances force the DC OPF to reroute
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Figure 11. Left column: Panels a-g illustrate reported outages at the county level (‘Outages in MWh’), with small dots
representing the total flood-related losses of load in MWh at a flooding depth of 8 ft. Right column: Panels b-h show locational
marginal prices (shadow prices) at specific hours for an 8 ft flooding depth during Hurricane Florence.

large amounts of power through the network, which can result in physical infeasibilities that make it
impossible to achieve a supply-demand balance everywhere, leading to higher LMPs in areas experiencing
outages and sometimes load-shedding.

3.3. Impacted communities
Figure 12(a) shows that outages caused directly by substation damages (gray bars) on September 18th at
11:00 pm represent the largest proportion of flooding-related unserved energy for an equipment height of
2 ft, compared to indirect (scarcity-driven) load-shedding. However, this shifts at an equipment height of 8 ft
(figure 12(c)), and indirect losses become a larger driver of the overall loss of load. Figures S21–S24 in the
supplementary material show that equipment elevations in the range of 0–3 ft are mostly driven by direct
unserved energy, while higher elevations are driven by indirect unserved energy as fewer sites are impacted.
Moreover, figures 12(a) and (c) display the total unserved energy per capita for each racial group (dotted
line). Specifically, figure 12(a) shows that, for a 2 ft equipment height, communities of color experience
higher unserved energy. However, this shifts in 12 c for an 8 ft equipment height.

Figure 12 also delves into the distribution of total flood-related unserved energy across various counties
and communities in North Carolina. Figures 12(b) and (d) show total flood-related unserved energy for 2 ft
and 8 ft equipment heights, respectively, on September 18th at 11:00 pm during Hurricane Florence. In
figure 12(b), the colors of each county correspond to values on the SVI. In figure 12(d), the colors of each
county indicate the percentage of residents identifying as people of color. A significant correlation (r = 0.77)
exists between a county’s SVI and its percentage of individuals identifying as people of color (see figure S34
in the supplementary material).

Figure 12(b) indicates that counties with a higher SVI are more susceptible to flood-related unserved
energy when the equipment height is 2 ft; flood-related losses and SVI are correlated (Pearson R= 0.53, as
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Figure 12. (a) For a 2 ft equipment height: The dotted black line represents the total unserved energy per racial group
(MWh/person) on September 18th at 11:00 pm within each racial group. Load shedding (representing indirect mean unserved
energy) is indicated by the turquoise portion, while the gray portion signifies the direct unserved energy resulting from impacted
substations; (b) the black dots represent the total unserved energy at a 2 ft equipment height within each county, with the colors
of the counties reflecting the respective Social Vulnerability Index; (c) similarly to point (a), but for an 8 ft equipment height; (d)
the black dots represent the total mean unserved energy at an 8 ft equipment height, while the colors of the counties indicate the
percentage of people identifying as people of color in North Carolina.

shown in figure S34 of the supplementary material). At an equipment height of 8 ft (figure 12(d)) only two
counties experience flood-related unserved energy.

Overall, figure 12 suggests that elevating substations would be an effective strategy for mitigating the
incidence of flood-related outages during Hurricane Florence, especially for vulnerable counties. Additional
results for other equipment height scenarios and dates are available in the supplementary information.

4. Limitations and outlook

This study represents a step forward toward better assessing the impacts of flooding on the North Carolina
grid (and power systems in general). However, some limitations remain, as detailed below.

First, our flood risk assessment relies on data from coastal basins, including White Oak, Lumber, Cape
Fear, Neuse, and Tar Pamlico, as these areas were most affected by Hurricane Florence. We use high-water
marks (HWMs) hourly time series of flooding depth to perform hourly ordinary spatial kriging within each
of these basins. However, it is important to note that the time series obtained as a result of the data
assimilation process do not account for restoration times or component replacement needs within the
electrical substations. The durations of flood-caused outages represented in our modeling are likely to be
underestimated. The method adopted relies solely on the HWM data within each basin, and these estimates
can be significantly affected by the amount of data and the distance between points, as exemplified in [56].
To improve spatial flooding depth interpolation, future research endeavors could increase the amount of
input flood depth data by incorporating additional sources of flood depth data, such as crowd-sourced
images [2], or leveraging remote sensing data, as exemplified in [57]. Additionally, repair time can be used as
a metric associated with damage categories, as outlined in [58].

Second, it would be more accurate to model the entire Duke Energy system, encompassing both North
Carolina and South Carolina, using the DC OPF. This broader scope would provide a more comprehensive
view of generator dispatchment dynamics across the entire Duke Energy territory. Moreover, it is worth
noting that this study focuses solely on one specific extreme weather event. To gain a deeper understanding
of grid dynamics, future research should expand the analysis to include past and future storms and their
potential impacts on both current and future grid infrastructure.

Third, we did not conduct a comprehensive assessment of the grid’s resilience against hurricane
flood-related power outages and their effects on communities. To improve our understanding and develop
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more effective strategies for disaster management and community support, additional metrics should be
explored. This could include considering different hurricane intensity levels, probabilistic grid asset failures
and restoration times, and first-response strategies, as in [59]. Our study did not consider alternative
methods to strengthen the resilience of the grid, such as microgrids [60]. Additionally, many other metrics
could be considered when choosing the best resilience strategy [61].

5. Conclusions and future work

This work investigates the ramifications of flooding from Hurricane Florence on the system dynamics of the
North Carolina bulk electric power grid. The study makes three contributions. Initially, it identifies the grid
assets that were impacted during Hurricane Florence through a purely data-driven flood risk assessment
facilitated by spatial kriging. These impacted assets are subsequently translated to time series inputs that alter
demand (due to flooded substations), generation (owing to flooded solar panels), and transmission (as a
result of impacted lines). Secondly, we leverage a detailed nodal DC OPF model to simulate the grid
dynamics during Hurricane Florence, yielding estimates of both direct and indirect impacts of flooding on
the grid in terms of physical behavior (e.g. power flows through the transmission network), locational
measures of scarcity assessed through the deployment of LMPs, and loss of electricity service. Last, we deploy
our analysis framework to estimate the total unserved energy across various counties and communities,
adding some to the discernment of impacts on the state’s vulnerable communities.

When running the DC OPF model, several critical insights were obtained for policy and infrastructure
decisions. First, the model demonstrated the significant role of substation equipment elevation as a
hardening method during extreme weather events. Elevating substations to higher heights, such as 8 ft,
significantly reduces total unserved energy. Second, the findings unveiled a significant connection between
substation outages, power flow disruptions, and extreme (elevated) LMPs during Hurricane Florence.
Substation outages caused by flooding alter the transmission network topology, altering power flows and
causing ripple effects (namely, supply scarcity) elsewhere in the grid, even in places where no flooding is
occurring. Finally, impacts were evaluated spatially among the communities in North Carolina, revealing
that communities with a higher SVI were much more heavily impacted, not only in terms of the actual
outcomes of the model but also when compared to the actual reported outages.

The findings presented here can serve as a benchmark for future studies aiming to conduct even more
precise analyses of flooding impacts on power system operations, which should be conducted proactively to
plan cost-effective mitigation strategies to enhance the grid’s resilience and the resilience of vulnerable
communities.

Software and data availability

The model is open-source and publicly available. All codes of the model and data used are available under
MIT free software license [62].

Data availability statement

The data that support the findings of this study are openly available at the following URL/DOI: https://
github.com/lprieto1409/DC_OPF_model.
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