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Abstract

Studies of bulk power system operations need to incorporate uncertainty and sensitivity analyses,
especially around exposure to weather and climate variability and extremes, but this remains a
computational modeling challenge. Commercial production cost models (PCMs) have shorter
runtimes, but also important limitations (opacity, license restrictions) that do not fully support
stochastic simulation. Open-source PCMs represent a potential solution. They allow for multiple,
simultaneous runs in high-performance computing environments and offer flexibility in model
parameterization. Yet, developers must balance computational speed (i.e. runtime) with model
fidelity (i.e. accuracy). In this paper, we present Grid Operations (GO), a framework for
instantiating open-source, scale-adaptive PCMs. GO allows users to search across parameter spaces
to identify model versions that appropriately balance computational speed and fidelity based on
experimental needs and resource limits. Results provide generalizable insights on how to navigate
the fidelity and computational speed tradeoff through parameter selection. We show that models
with coarser network topologies can accurately mimic market operations, sometimes better than
higher-resolution models. It is thus possible to conduct large simulation experiments that
characterize operational risks related to climate and weather extremes while maintaining sufficient
model accuracy.

1. Introduction

There is growing concern about the vulnerability of bulk electric power systems to weather and climate
variability and extremes [ 1], which can strain the grid through demand spikes, generator outages and
deratings, and other equipment failures, and cause reliability impacts and volatility in electricity markets
[2-5]. Correspondingly, there is growing interest in incorporating these stressors (alongside the effects of
decarbonization) into operational studies using production cost models (PCMs) [3, 4, 6—8]. Numerous
previous studies have used PCMs to simulate bulk power system operations on the interconnection scale
[9-19], and a subset of these explicitly focus on vulnerability to weather and climate variability and extremes.
Most of these previous studies employ commercial grid simulation software. Commercial models have
several advantages, including shorter runtimes. However, they also have important limitations (e.g. the
opacity of numerical approaches and license restrictions, etc) that do not always allow for the large stochastic
simulations needed to characterize weather and climate-related operational risks in power systems.

Take, for example, a hypothetical experiment in which a commercial PCM is used to characterize
uncertainty in grid performance under future climate change. Given uncertainties in future greenhouse gas
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emissions pathways, along with uncertainties across climate models (including downscaling approaches),
even a modestly scoped analysis may involve running the PCM for 1000 s—10 000 s of individual weather
years [2, 4]. What if the commercial PCM comes with a license that limits its use to serial processing (one
model run at a time)? If the modeler is further constrained by a computational budget (e.g. total wall clock
runtime limit of L), the largest simulation ensemble possible is L divided by R, where R is the average
runtime of the PCM for a single year. The model runtime R becomes limiting in the experimental design if
the quotient % < 10,000.

Thanks to the development of open-source grid asset databases like the Electric Grid Test Case
Repository [20] and OpenStreetMap [21], developing open-source grid operation models is now possible
and several have emerged in recent years [22-24]. Open-source models allow for flexible design and
simultaneous batch processing of multiple model runs in high-performance computing (HPC)
environments—both of which support stochastic simulation. For example, to increase simulation size and
expand capabilities for uncertainty characterization and sensitivity analysis, developers can reduce the
runtime of an open-source PCM (i.e. increase L/R) by simplifying core process representations. Several
options exist to do this, including (but not limited to) aggregating across model features and space/time,
network reduction, and relaxation of binary variables [3, 25-29].

A broad literature exists on navigating the model fidelity and computational speed tradeoff in PCMs and
power system expansion models [3, 30-38]. For instance, the authors in [38] developed a method to
investigate the sensitivity of power system expansion models to various parameters and model structures.
They found out that temporal resolution is the leading sensitivity factor in power system models. The
authors in [36] analyze the effects of temporal resolution in power sector investments under different
technology and policy scenarios. They argue that simplifying the temporal variability used in integrated
power sector investment models might lead to deteriorations in model quality. Models should be neither
oversimplified (e.g. unable to capture realistic behaviors of the grid in response to hydrometeorological
stressors) nor overly complex (e.g. computational runtimes that limit experiment size and exploration of
uncertainty) [39]. Yet, a comprehensive framework for customizing open-source PCMs based on these
recommendations is generally lacking in the literature.

In this paper, we introduce the Grid Operations (GO) family of models, which allows for the easy
training and testing of PCMs constructed around open-source synthetic grid databases. The main novelty of
the GO software is that it establishes a pipeline from open-source energy data to the instantiation and
calibration of PCMs. Furthermore, GO gives users the ability to vary the network topology and mathematical
model formulation, as well as model parameters such as transmission line limits and economic hurdle rates.
Users can then identify a model version that meets their experimental needs (e.g. resource limitations) in a
robust and reproducible manner.

GO is available for all three interconnections of the U.S. (Western Interconnection, Eastern
Interconnection, and Texas Interconnection). In this paper, we demonstrate our approach over the Western
Interconnection, a large and diverse system with previously demonstrated sensitivity to weather and climate
variability and extremes [14, 18, 40]. We conduct an evaluation of 100s of model versions and demonstrate
quantitively that models with coarser topologies and lower runtimes can capture system dynamics
adequately, unlocking expanded capabilities for stochastic simulation. This paper doubles as a detailed
roadmap for how to use GO’s flexible platform to design scale-adaptive model versions that balance
computational complexity and fidelity.

2. Methods

In this section, we start with a general description of the GO framework, including its approaches for
calibrating PCMs. Then, we demonstrate how GO can be implemented in a real system, the U.S. Western
Interconnection.

2.1. The generalizable GO framework

The GO software, written in Python, is based on synthetic grid databases of generators and system topologies
created by Texas A&M University (TAMU) [41—44]. GO instantiates simpler modeled versions of
interconnection scale PCMs in four steps: (1) nodal selection; (2) network reduction; (3) data allocation and
file setup; and (4) simulation using PCMs. Figure 1 summarizes the generalizable GO framework.

2.1.1. Step 1: Nodal selection

GO allows users to train, test, and select a PCM version by searching over four user-defined parameters (see
blue boxes in figure 1). One of these parameters is the number of nodes that should form the final, simplified
network. For example, if the full TAMU network representation has 10 000 nodes, a user could specify that
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Figure 1. Flowchart of GO software including preprocessing files, algorithms, user-defined parameters, inputs, and outputs.

they want to reduce this to a simpler, ‘backbone’ network made up of 100 nodes. After specifying this
number, the first step in GO is a nodal selection algorithm that identifies which nodes to preserve from the
full synthetic TAMU dataset. There are three types of node classifications in the original TAMU dataset:
demand nodes (each of which comes with an estimated average load), generation nodes (each of which is
assigned a total generation capacity), and transmission nodes (each of which is assigned a voltage level).
Several criteria are applied to identify the most critical nodes in the network and guarantee minimum
requirements to electrically connect and geographically cover interconnection scale systems.

First, for each unique balancing authority (BA) and state pairing, the node with the largest average
demand is selected (BAs are entities which are responsible for balancing electricity supply and demand over
distinct geographical areas). After removing these from the set, the remaining nodes are selected in equal
numbers across the three different node classifications, though this ratio can be altered if desired. The
algorithm selects demand nodes starting from the one with the highest electricity demand and moving to
nodes with lower demands. Likewise, the algorithm selects generation nodes starting from the one with the
largest generation capacity and moving to nodes with smaller generation capacities. After filtering nodes by
voltage level (>345 kV), the algorithm selects transmission nodes starting from the node with the highest
demand and moving to lower demands. Throughout the nodal selection process, a distance threshold (e.g.
5 km) restricts the algorithm from selecting any two nodes that are within that threshold from each other
(this threshold can be changed by the user).

2.1.2. Step 2: Network reduction

After selecting which nodes to preserve from the original TAMU network, GO uses a network reduction
algorithm [45] to generate a new, simplified network equivalent topology. The algorithm first moves all
generators to nodes selected in step 1 based on the shortest electrical distance. It then recalculates nodal loads
to compensate for the movement of the generators, such that estimated power flows on the preserved lines
exactly match those in the full system. For other lines, the algorithm creates ‘equivalent’ lines and associated
impedances based on Ward’s equivalent circuit calculation [46]. Using distances and impedance values
typical for high-voltage transmission lines, GO computes the per-distance impedance value (£ km~!), which
we then associate with line flow capacities according to the transmission line loadability curve [47]. See [45]
for more details about the network reduction process used by GO. For a general review of network reduction
methods, also see [48].

2.1.3. Step 3: Data allocation and file setup

After using the network reduction algorithm to create a simplified network, a data allocation algorithm
disaggregates BA-level time series inputs, such as electricity load and solar and wind generation, and assigns
these values to individual nodes. BA-level time series inputs are gathered from the U.S. Energy Information
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Administration (EIA) [49]. This process also creates job folders, which include all inputs and scripts
necessary to run the simulations on a desktop computer or in an HPC environment.

In order to disaggregate BA-level load time series to each of the nodes in the reduced topology, nodal load
weights are calculated within each BA by using the average load information from the TAMU dataset for each
node in the reduced topology. In the TAMU dataset, a representative average nodal load value is assigned to
each node. These nodal load values are used to calculate nodal load weights. BA nodal load weights are
calculated by dividing the average nodal load of a specific node (from TAMU) by the sum of the average
nodal load values of every node (from TAMU) in that specific BA. Nodal load weights are then multiplied by
the load time series for their respective BAs to come up with the nodal loads for each hour. Available BA
solar/wind generation is allocated to each node by calculating a weight reflecting the installed solar/wind
capacity at each node. These weights are then multiplied by the solar/wind generation time series for their
respective BA to get nodal solar/wind generation time series.

2.1.4. Step 4: PCM

After nodal selection, network reduction, and data allocation and file setup, GO simulates GO using the
resultant PCM. The PCM can simulate bulk electricity GO using either linear programming (LP) (only
economic dispatch (ED)) or mixed integer LP (both unit commitment (UC) and ED) formulations. The
PCM is written in the Pyomo mathematical optimization package and can be solved using open-source (e.g.
HiGHS, SCIP) or commercial solvers (e.g. CPLEX, Gurobi). All results shown in this paper were produced by
pairing GO’s PCM with the Gurobi solver.

The objective function of the PCM is to minimize the system-wide cost of meeting fluctuating hourly
electricity demand as well as cost of unserved energy, subject to several constraints such as individual
generator capacities and ramp rates, thermal capacities of transmission lines, and Kirchhoff’s current and
voltage laws using a DC power flow approximation. The PCM iteratively minimizes costs over a user-defined
operating horizon (e.g. 24-168 h) within which the modeled system operator has perfect foresight. Results
presented in this paper reflect an operating horizon of 24 h. The decision variables consist of binary (if
mixed-integer linear programming (MILP) is selected) and continuous electricity generation variables that
control generator scheduling and dispatch, power flow between different nodes, voltage angles at each node,
and loss-of-load variables at each node. Loss-of-load variables are units of last resort whose marginal cost is
priced at $2000 MWh ™! (the current loss of load price in several major markets [50]). Model outputs are
hourly operating generation schedules of each power plant, hourly locational marginal prices (LMPs) at each
node, simulated power flows on every transmission line, hourly voltage angle at each node, and (if
applicable) hourly loss of load at each node.

Nuclear power plants are regarded as must-run resources apart from forced and unforced generator
outages. The availabilities of solar and wind generation are represented by exogenously defined hourly time
series, though the system operator can curtail both solar and wind if necessary. Weekly hydropower
generation targets are collected from EIA-923 dataset [51]. From weekly data, hourly minimum, hourly
maximum, and daily allowed total hydropower generation is calculated and fed into the model. Then, PCM
determines the optimal hourly hydropower schedule at each node.

Hourly generator outages are represented using data from the North American Electric Reliability
Corporation’s Generating Availability Data System [52]. Estimated lost capacity due to generator outages is
subtracted from the nameplate generator capacities in each hour. Note that representation of both
hydropower availability and unit outages can easily be substituted with alternative approaches, if desired. A
more detailed discussion of GO’s PCM modeling approach can be found in supplementary information.

2.2. Model calibration and selection process
GO allows users to calibrate and select a PCM version by searching over four user-defined parameters (see
blue boxes in figure 1):

2.2.1. Number of nodes

Users can select different numbers of nodes that will be in the final, simplified network representation of the
PCM, thereby affording flexibility in the level of system granularity. As the number of nodes in the system
increases, model runtimes generally increase as well because linear and mixed integer linear power system
problems exhibit polynomial time complexity.

2.2.2. Mathematical formulation

Users can choose to implement only ED processes by using only LP or they can model both UC and ED
processes by using MILP. MILP formulations entail higher runtimes due to the presence of binary generator
on/off decision variables. On the other hand, MILP formulations allow for greater fidelity with respect to the
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operations of power plants (inclusion of startup costs, no load costs, and minimum-up and minimum-down
times of dispatchable generators). Capturing these generator characteristics can be important in accurately
capturing the generation mix, power plant emissions, and electricity prices.

2.2.3. Transmission line capacity scaling factors

In GO, initial transmission line capacities are initially estimated by the network reduction algorithm.
However, users can uniformly adjust transmission line capacities (= in MW) in the reduced network to
increase model fidelity.

2.2.4. Hurdle rate scaling factors

Hurdle rates represent the cost of delivering 1 MWh of electricity from one BA (i.e. a set of geographically
clustered nodes representing quasi-independent grid operators) to another. Users can search over a range of
different percentage scaling factors (£ in %) to uniformly alter hurdle rates among BAs.

GO tracks the performance of the PCM by comparing simulated LMPs and generation mixes with
historical data. Model performance is measured in terms of three fidelity metrics: mean absolute percentage
errors in the interconnection scale yearly generation mix, and R? and root mean square error (RMSE) of
daily LMPs at major pricing hubs/wholesale electricity markets.

Daily LMPs at major pricing hubs are calculated by taking a demand-weighted average of nodal LMPs
within the geographic boundaries of each pricing hub (see figure 3 for boundaries of pricing hubs). In order
to calculate fidelity metrics on interconnection scale (i.e. for Eastern Interconnection and Western
Interconnection), daily LMPs for multiple pricing hubs are utilized to calculate an aggregate
(i.e. interconnection scale) R? and RMSE score by the demand-weighting average LMPs across all pricing
hubs. For example, if the average loads in three different pricing hubs are: 10 GWh, 5 GWh, and 15 GWh,
and simulated vs. historical price comparisons in the same hubs yield R? values of 0.90, 0.85, and 0.95, the
interconnection scale R? score for the PCM would be 0.9167.

GO numerically ranks each PCM tested (1 = best) with respect to each individual metric (LMP R?, LMP
RMSE, and generation mix error), and then assigns each PCM an overall numerical ranking based on the
sum of individual metric rankings. In this case, the model version with lowest sum of rankings would be the
most accurate model among all created model versions. The model versions are sorted with respect to their
sum of individual metric rankings and are given an ultimate fidelity ranking. This way, users can identify the
highest-fidelity version of the PCM.

2.3. Demonstration of GO in critical test bed: U.S. Western Interconnection

GO facilitates the quick development of open-source PCMs and evaluation of model performance over a
wide parameter space, allowing users to find versions that sufficiently balance the tradeoff between model
fidelity and computational speed. In the remainder of this paper, we demonstrate these capabilities in a test
bed of critical importance: the U.S. Western Interconnection, an interconnected system of 28 separate
balancing authorities across the states of California, Oregon, Washington, Idaho, Nevada, Arizona, Utah,
Wyoming, Montana, Colorado, and New Mexico (figure 2). In this paper, we use GO to (a) instantiate 540
different PCM models over a wide combinatorial parameter set; (b) measure model performance; and (c)
identify models that demonstrate high fidelity and sufficient simulation speed. The 540 model versions are
the combinations of:

e 9 different reduced networks (containing 100, 125, 150, 175, 200, 225, 250, 275, and 300 nodes) (see
figures 2(c) and (d))

e 2 different mathematical formulations (LP and MILP)

e 6 different transmission limit scaling factors (+0 MW (baseline), +500 MW, +1000 MW, 41500 MW,
42000 MW, 42500 MW)

e 5 different hurdle rate scaling factors (—100%, —50%, 0% (baseline), +50%, +100%). Baseline values
of BA-to-BA hurdle rates are taken from the 2030 Anchor Data Set developed by the Western Electricity
Coordinating Council (WECC) [53].

Due to lack of open-source data and losing one-to-one node correspondence in a reduced network
representation, it is not possible to conduct an LMP comparison for each node in the Western
Interconnection. In this sense, LMP comparison is carried out for each pricing hub. We have access to
historical prices at five major pricing hubs in the Western Interconnection. Three are in California: Pacific
Gas and Electric (PGAE), Southern California Edison (SCE), and San Diego Gas & Electric (SDGE) [55].
The other two pricing hubs are the informal Mid-Columbia (MidC) trading hub in the Northwest and the
Palo Verde trading hub in the Southwest [56]. Since the temporal resolution of historical LMPs in MidC and
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Figure 2. (a) 28 balancing authorities (BAs) in the Western Interconnection (each color represents a different BA) [54]; (b) all

generator locations, types, and capacities in the Western Interconnection [42]; (c) 100-node reduced network; (d) 300-node
reduced network.
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Figure 3. Boundaries of five pricing hubs used in this study. These pricing hub boundaries are constructed using geographical
data from U.S. Department of Homeland Security [54, 57] and pricing hub designations from EIA [49] and CAISO [55].

Palo Verde is daily, we aggregate LMPs simulated by the GO PCM to a daily time step for comparison. The
boundaries of these five pricing hubs are shown in figure 3.

3. Results and discussion
3.1. Yearly model calibration and selection results

Historical operating data for every BA in the Western Interconnection are available for the years 2019-2021,
so our parameter search (i.e. model calibration) focuses on this period. Figures 4(a)—(d) show the
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Figure 4. 3D model performance plots for the 2019 simulation year showing the influence of choices regarding (a) number of
nodes, (b) transmission limit scaling factors, and (c) hurdle rate scaling factors. Panel (d) shows runtimes in hours. Each point

represents one model version out of 540. Circles represent LP versions whereas crosses represent MILP versions. Red stars show
the best possible solution on these figures.

performance of all 540 model versions for the 2019 simulation year. The three dimensions measure model
performance, and red stars at the origin show the ideal point (minimized LMP RMSE and generation mix
error, maximizing LMP R?). LP formulations are shown with circles whereas MILPs are designated with
crosses. In each respective panel, colors signify the number of nodes in the reduced network, transmission
limit scaling factors, hurdle rate scaling factors, and wall-clock runtime.

Figure 4(a) shows that there is not a straightforward relationship between the number of nodes and
model fidelity. While the expectation is generally that greater model complexity (i.e. larger numbers of
nodes) should yield greater model accuracy, we see that some models with fewer nodes (blue colors tones)
can also mimic GO relatively well. Figure 4(b) shows that lower transmission scaling factors (like +500 MW)
do better in terms of LMP R* and RMSE values, but higher transmission scaling factors seem to be better at
capturing generation mix. In general, we observe that a higher number of nodes can give better results when
coupled with lower transmission scaling factors, and models with lower numbers of nodes require higher
transmission scaling factors. This is because having more nodes in the reduced topology increases the
electrical connectivity of individual nodes so that lower transmission scaling factors can suffice. When we
evaluate model versions by hurdle rate scaling (figure 4(c)), we can see that there is a consistent gradient in
colors, indicating that lower hurdle rates increase model fidelity in 2019.

Figure 4(d) shows the same 540 model versions evaluated in terms of wall-clock runtime. Runtimes for a
single year (8760 h) vary between 2 and 120 h depending on the number of nodes, mathematical
formulation, and transmission scaling factors. Clearly, there are some less complex (lower node) LP
formulations with shorter runtimes that can also do a good job of capturing LMPs and generation mix,
indicated by numerous dark blue circles close to the ideal point (red star). In fact, the best-performing model
version for 2019 only takes 2 h to finish simulating 1 year of hourly GO .

Figure 5 compares runtimes for different model versions (varying the number of nodes in the reduced
network, mathematical formulation, and transmission scaling factors), all assuming the same default hurdle
rates. In general, increasing the number of nodes increases the model runtimes whereas increasing
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Figure 5. Model runtimes for different number of nodes, mathematical formulations, and transmission scaling factors in 2019.
This figure includes 108 model versions out of 540 because hurdle rates do not have a noticeable impact on the model runtimes.
In this figure, runtimes show the simulations with baseline hurdle rates (0% scaling).

transmission line capacities decreases runtimes. However, after a certain threshold (around +2000 MW),
increasing transmission line capacities does not significantly affect the runtimes because the model becomes
mostly free of transmission capacity limitations. In our simulations, changing hurdle rates did not have a
significant impact on the runtimes.

Figure 6 shows an example of a generation mix comparison for the best-performing model version for
the 2019 simulation year (which is also indicated in figure 4(a)). Although there are some differences
between historical and simulated daily generation mix, this model version captures yearly generation mix
trends in the Western Interconnection to a certain extent.

Figure 7 shows a visual comparison example of historical and simulated daily LMP time series from the
same, best-performing model version for the 2019 simulation year. This model version does a good job
capturing LMP variations in PGAE, SCE, and SDGE but it misses some oscillations in MidC and Palo Verde
LMPs.

We calibrated the PCM separately for 2019, 2020, and 2021, and then for all combinations of those years
with a leave-one-year-out approach (e.g. train on 2019-2020, test on 2021; train on 2019 and 2021, test on
2020, etc). We then compared the resultant LMPs and generation mixes with historical data and selected the
best model version for each year combination. For 2019, a model with a 125-node topology, LP formulation,
-+500 MW transmission limit scaling, and —100% hurdle rate scaling yielded the best results. The best model
version for 2020 has the same characteristics, except for the number of nodes (100 vs 125). The best-ranked
model for 2021 includes a 225-node topology, a MILP formulation, +500 MW transmission limit scaling,
and —100% hurdle rate scaling. See figures S2 and S3 in the supplementary information for 3D model
performance plots for 2020 and 2021. Table 1 lists all selected parameters of the best-ranked model versions
for each set of training year(s). In general, an LP formulation with +-500 MW transmission scaling and
—100% hurdle rate scaling is the most robust model version.

3.2. Impact of user-defined parameters on model fidelity and different model selection methods

GO’s flexibility allows users to instantiate hundreds of different model versions. In this section, we mine
these simulation results for larger patterns in how parameters affect model performance. The panels in
figure 8 slice the 540 different model versions in several ways. Each column shows data for a different
simulation year (2019, 2020, and 2021). The rows isolate the effects of changing each user-defined parameter.
For example, in the first row, each box plot (color) shows distribution of performance rankings (1 = best,
540 = worst) of 60 unique model versions that share the same number of nodes but differ in terms of
mathematical formulation, transmission line scaling, and/or hurdle rate scaling. There are 9 box plots,
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Figure 6. (a) Simulated daily total generation mix; (b) simulated yearly total share of each generation type; (c) historical daily
total generation mix; (d) historical yearly total share of each generation type. Results are from the best-performing model version
for the 2019 simulation year.

equaling the 540 total versions tested. Likewise, in the second row, each box plot (color) represents 270 out of
540 model versions, all of which share the same mathematical formulation (either LP or MILP).

The first row of figure 8 shows a fairly consistent trend across all three simulation years: as the number of
nodes increases, the median model ranking decreases (i.e. model fidelity increases). At first glance, this may
seem to conflict somewhat with our finding that the best-ranked models generally have a smaller number of
nodes (see table 1). However, the lower whisker of each box plot falls close to zero, indicating that higher
performing models are possible for any number of nodes selected. The interquartile ranges (IQRs) of the
boxplots also vary. For example, in 2019, models with between 150-250 nodes have smaller IQRs, indicating
that the performance of these models is more stable across values of other parameters than model versions
with a smaller/larger number of nodes. Looking at 2021, the opposite is true. In addition, the second row of
figure 8 indicates that LP versions did a better job in 2019 and 2020 but MILP versions performed better in
2021 on average.

Another finding illustrated by figure 8 (third row) is that moderate levels of transmission line scaling
typically yield more accurate models. In fact, we observe that high-performing (low-ranked) models become
impossible to find for certain transmission line parameterizations. Zero transmission scaling consistently
yields the least-accurate models. In addition, as we increase transmission line capacities above +500 MW to
-+1000 MW, the model becomes free of transmission restrictions and starts to utilize lower marginal cost
power plants and transfer electricity more freely throughout the network, which causes inaccuracies in
generation mix and LMPs in different regions In general, we find that model performance is the least
sensitive to hurdle rate scaling (see figure S4 in the supplemental information shows small changes in model
selection metrics). Thus, we primarily focus our discussion on the other three, more impactful, parameters.

Figure 9 provides a deeper examination of the interactive effects of two key model parameters: the
number of nodes in the network and transmission line scaling. In particular, we observe that having a higher
number of nodes (warmer colored boxplots) becomes much more important to model accuracy if
transmission lines are not scaled-up (panels on the left). Increasing the number of nodes enhances the
connectivity of the reduced network, which prevents LMP spikes caused by activation of loss of load
variables. However, if we scale transmission lines by more than 4500 MW, we can create the same
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Figure 7. (Left) Simulated and historical daily LMP time series for each pricing hub; (right) distribution and best-fitting line of
simulated and historical daily LMPs for each pricing hub. Results are from the best-performing model version for the 2019

simulation year.

connectivity conditions with fewer nodes. In fact, at higher transmission scaling levels, networks with lower
numbers of nodes yield accurate models. In general, we find that transmission line and hurdle rate scaling
factors interact like supporting calibration parameters (e.g. hyperparameters), with the nature of this
interaction also dependent on the number of nodes and mathematical formulation selected.
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Table 1. Selected parameters of the best model versions for each training set.

Number Mathematical = Transmission line Hurdle rate

Training set of nodes formulation limit scaling factor ~ scaling factor
2019 125 Lp 4500 MW —100%
2020 100 LpP 4500 MW —100%
2021 225 MILP +500 MW —100%
2019 and 2020 125 LpP +500 MW —100%
2019 and 2021 125 LP +500 MW —100%
2020 and 2021 125 LP 4500 MW —100%
2019, 2020, and 2021 125 LP 4500 MW —100%
2019 2020 2021

500 !
H
& 400 |
It
2 300 ! !
3
z 200 . |
£ 100 {
&

0 1

100 125 150 175 200 225 250 275 300 100 125 150 175 200 225 250 275 300 100 125 150 175 200 225 250 275 300

Number of Nodes Number of Nodes Number of Nodes
< 500 _ -1 1
£
o 400 |
[ a
o
3 300 a
o fu]
200 o o ‘
% 100 1
o i |
LP MILP LP MILP LP MILP
Formulation Formulation Formulation

< 500 1
]
=1 .
® 400 1 i
L '
[ T
=
& 200 1
2 |
€ 100 |
<
o« 1

0 ]

0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
Transmission Limit Scaling (+MW) Transmission Limit Scaling (+MW) Transmission Limit Scaling (+MW)
g0l | T 1 T T
8
m 400 ]
I\
2 300 o 5 1 o =
8 o 5 a o
200 (=) ]
£
=
£ 100 | l 1
R i i T 1 Ll L LT
-100 -50 o] 50 100 -100 -50 o] 50 100 -100 -50 0 50 100
Hurdle Rate Scaling (%) Hurdle Rate Scaling (%) Hurdle Rate Scaling (%)

Figure 8. Model ranking distributions of number of nodes, model formulation, transmission limit scaling, and hurdle rate scaling
in 2019, 2020, and 2021. White squares designate the average ranking for each parameter value.

3.3. Influence of training and testing data on model selection
Table 2 lists model performance metrics and rankings (1 = best) for all possible training and test year
combinations, allowing us to observe how the choice of this data could impact model selection.

For example, when the 540 different versions of the PCM are used to simulate 2019, the version that
performs the best also performs second best when tested in 2020 and the 16th best version when tested in
2021. When we train the PCM on all two and three-year combinations, the best-performing model version is
the exact same version that performs best when simulating 2019 (see table 1).
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Figure 9. Model ranking distributions of number of nodes while keeping transmission limit scaling constant in 2019, 2020, and
2021. White squares designate the average ranking for each number of nodes.

Table 2. Model performance metrics and rankings for different training and test years.

Test year
2019 2020 2021
Gen. Gen. Gen.
mix mix mix
LMP error LMP error LMP  error

LMPR*> RMSE (%) Rank LMPR?> RMSE (%) Rank LMPR®> RMSE (%) Rank

2019 0.62 3035  3.56 1 0.62 29.69 291 2 0.31 52.64 3.04 16
2020 0.66 3331 3.73 5 0.63 31.48 2.75 1 0.28 5595 241 213

2021 0.58 32,19 5.58 221 0.42 3548 5.08 468 0.27 52.22  1.73 1
2019-  0.62 3035  3.56 1 0.62 29.69 291 2 0.31 52.64 3.04 16
2020

Training 2019- 0.62  30.35 3.56 1 0.62 2969 291 2 031  52.64 3.04 16
Years 2021
2020- 0.62 3035 3.6 1 0.62 2969 291 2 031 5264 3.04 16
2021
2019- 0.62 3035 3.6 1 0.62  29.69 291 2 031 5264 3.04 16
2020
2021
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When the 540 different versions of the PCM are used to simulate 2020, the version that performs the best
also does a good job of capturing 2019 grid dynamics, but it performs significantly worse at simulating GO
in 2021. Likewise, when the PCM is trained only on 2021 data, it does a worse job simulating GO in 2019 and
2020. A possible reason is that the best model version in 2021 uses a MILP formulation. Among the 3 years,
the highest average daily natural gas prices are observed in 2021 (5.42$/MMBtu), which increases the
marginal cost of natural gas power plants and generally favors coal plants in the dispatch order. However,
without binary variables controlling the on/off status of coal power plants in LP versions, coal plants
overproduce. An MILP formulation introduces new costs (like startup) and additional constraints (like
minimum up and down time) for coal generators, which decreases their usage in the model yielding a closer
match with the historical generation mix.

There are numerous possible ways to select the ‘best’ model version, including using other metrics,
changing the weights of each metric in the selection stage, and selecting different model versions for each
pricing hub. For example, although the best model for 2019 accurately mimics the LMPs in three California
pricing hubs, it misses some price oscillations in the MidC and Palo Verde hubs (figure 7) If we only
considered the MidC hub while selecting the best version, we would have chosen a model with 300-node
topology, LP formulation, +0 MW transmission limit scaling, and 0% hurdle rate scaling. This would have
increased the LMP R? of MidC from 0.49 to 0.74. On the other hand, a model with 100-node topology, LP
formulation, +2000 MW transmission limit scaling, and 0% hurdle rate scaling would work better for the
Palo Verde hub. This would have increased the LMP R* of Palo Verde from 0.57 to 0.7.

In addition, changing how we weigh the individual model performance metrics and/or which metrics are
considered at all can strongly affect the PCM selection process. For instance, figure 10 shows R? values from
different model versions for each pricing hub as well as the demand-weighted average R? value for the entire
Western Interconnection. The ‘best’ model version for 2019 (i.e. the lowest ranked model when LMP R?,
LMP RMSE, and average generation mix are all considered) is designated with a red square. However, there
are different model versions (like the 175-node MILP version with +500 MW transmission scaling or the
300-node LP version with +-0 MW transmission scaling) with worse overall rankings but higher LMP R?
values (these are indicated by orange squares).

An important feature of GO is its ability to help power system modelers navigate the tradeoff between
model fidelity and computational speed. Figure 11 illustrates this tradeoff for all 540 model versions in 2021.
It took nearly 40 h for the best-performing model version to simulate 2021 grid dynamics on an hourly time
step (cross in green box). As we can see, there are other possible versions in the orange box which have
similar rankings (i.e. fidelity) but require much lower runtimes. The modeler might prefer another version in
orange box to save computational time if the main interest of the research entails running the model
hundreds or thousands of times to characterize system performance, e.g. under weather and climate
variability and extremes. We can also see that if we also considered runtimes in model selection, the
algorithm may have a tendency to select a version in orange box as those versions are closer to the red star
which is the ideal point in this figure.

3.4. Experimental aims and computational limits

Ultimately, model selection should consider both the need for model fidelity and limitations on researchers’
computational resources (e.g. available number of cores, memory size, runtime limitations, etc). The GO
framework supports researchers in developing specialized s for their research questions. For instance, if a
user is interested in individual generator operations or air pollution emissions, choosing a MILP formulation
may be more appropriate. Exploring weather and climate uncertainty may recommend and faster LP. To
expand on this, we revisit the hypothetical example described in the introduction. Specifically, a researcher
would like to explore the impacts of future climate change on operations of the U.S. Western
Interconnection, using an ensemble of different general circulation models (GCMs), and exploring a range of
different shared socioeconomic pathways (SSPs) and representative concentration pathways (RCPs). In
addition, for each unique climate state (GCM + SSP combination), the researcher would like to simulate GO
using a 100 year Monte Carlo weather ensemble to explore stationary uncertainty.

The feasible scale of this experiment is likely to be constrained by available computational resources. For
example, what if the hypothetical researcher can run 10 simulations simultaneously on an HPC cluster and
has 45 d (or 1080 h) to complete the experiment? Table 3 shows how GO can be used to identify the best
PCM parameterization for five different experimental designs (columns in table 3).

Moving left to right, the number of runs required by each experiment increases. To meet this
requirement while staying within the allotted computational time, a researcher would need faster models
that utilize lower number of nodes and sometimes LP formulations. For example, moving from an
experiment that requires 200 runs to one that requires 400, the best available model (that is also feasible) uses
an MILP formulation, but the topology must be reduced from 225 nodes to 125. For any experiment
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Figure 10. Color-mapped LMP R? scores for each pricing hub as well as demand-weighted average for the Western
Interconnection. Values are grouped in terms of number of nodes, mathematical formulation, and transmission limit scaling
factors. This figure includes 108 model versions (with —100% hurdle rate scaling) out of 540 in 2019. Red square designates the
best model version in 2019 (with respect to LMP R?, LMP RMSE, and average generation mix error) whereas orange squares
designate the model versions where the demand-weighted average R? for the Western Interconnection is higher than the best
model version in 2019.

involving at least 800 runs, an LP model is needed to match the computational resource requirements. As the
number of runs required increases further beyond this point, the best available models must utilize simpler
networks. Transmission scaling factors increase slightly to create a less transmission-constrained system that
can be solved more quickly.

4. Limitations and future work

GO comes with some limitations which double as areas for future work. First, transmission and hurdle rate
scaling factors uniformly impact all lines and BA-to-BA power transactions. Although it may require more
costly calibration efforts to search for an optimal scaling factor for each individual line and BA-to-BA
transaction, selectively altering the individual transmission line capacities and hurdle rates might create a
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2021 and orange box designates other possible options with lower runtimes. Red star shows the optimal point on this figure.

Table 3. Number of available model versions and parameters of the best available model version under varying numbers of runs for
uncertainty analysis. The data in this table refers to 2021 simulation results.

1GCM, 1 1GCM, 2 2 GCMs, 2 1GCM, 4 4 GCMs, 4
RCP, 2SSPs, RCPs, 2 SSPs, RCPs, 2 SSPs, RCPs, 4 SSPs, RCPs, 4 SSPs,
100 weather 100 weather 100 weather 100 weather 100 weather

years years years years years
Runs required 200 400 800 1600 6400
Number of 540 535 534 525 214
feasible model
versions
Number of 225 125 225 125 100
Parameters of nodes
the Best Mathematical ~ MILP MILP LP LP LP
Feas%ble Model ¢ ormulation
Version Transmission ~ +500 MW +500 MW +500 MW +500 MW +1500 MW
Scaling Factor
Hurdle Rate —100% —100% 100% —100% —100%
Scaling Factor
1 year runtime  39.5 18.5 10.8 2.6 1.6
(hours)

more accurate model version. Second, the GO PCM assumes a single, central operator with perfect foresight
of load and generation resources beside the probabilistic outage. Integrating forecast errors and balancing
(real-time) markets could improve realism in certain cases. Last, fuel price information for many BAs is
limited. A spatial algorithm was used to generate fuel price time series for some BAs (see supplementary
information for more details). Using more granular and reliable fuel price information would most likely
enhance our ability to replicate LMPs more accurately.

5. Conclusion

Accurately representing power system dynamics over a wide range of operating conditions is critical for
performing vulnerability analysis. This imposes a challenge on researchers with computational budgets to
strike a balance between model fidelity and computational speed.
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To that end, this paper introduces GO, a framework for training and testing scale-adaptive open-source
PCMs on the U.S. interconnection scale. GO allows users to search over many parameterizations of a PCM
and identify versions that adequately balance model fidelity and computational speed. In an application over
the Western U.S., our results show that simplified PCMs utilizing LP formulations and significantly reduced
networks can adequately capture LMPs and generation mix. This result quantitively supports the potential
for large, stochastic simulation experiments using open-source PCMs, including experiments designed to
characterize risks from climate and weather variability and extremes. Other findings of note include the
interplay between transmission line scaling and network reduction in model calibration; essentially,
transmission line scaling allows users to maintain network dynamics (and model accuracy) while reducing
system complexity (and model runtimes). We also show that model selection is sensitive to choices around
training data (e.g. weather year) and testing data (e.g. market or regional subsystem of interest). Finally, we
provide a salient example of how experimental design (e.g. the scale of an uncertainty analysis), in the
presence of limits on computational resources, can lead researchers to choose different versions of a PCM
[58] serves as an example of how GO can be utilized for a renewable energy integration study in Western
Interconnection.

6. Software and data availability

The model is open-source and publicly available. All codes of the model and data used are available under
MIT free software license [59]. All model outputs utilized in this study are available under Creative
Commons Attribution 4.0 International license [60].
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The data that support the findings of this study are openly available at the following URL/DOI: https://doi.
0rg/10.57931/1923267.
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